User manual IM2

Thermocouple Type K, B, S, N, E, T, R, L, J

Technical features:

- red display of -19999... 99999 digits (optional: green, orange or blue display)
- minimal installation depth: 70 mm without plug-in screw terminal
- min/max-memory
- display flashing at threshold value exceedance / threshold value undercut
- permanent min/max-value recording
- brightness control
- programming interlock via access code
- protection class IP65 at the front side
- plug-in screw terminal
- optional: 2 relay outputs
- optional: analog output
- accessories: PC-based configuration-kit PM-TOOL with CD \& USB-adapter for devices without keypad and for a simple adjustment of standard devices

Identification

STANDARD-TYPES
Thermocouple
Housing size: $96 \times 48 \mathrm{~mm}$

ORDER NUMBER

IM2-1TR5B.040X.570xD
IM2-1TR5B.040X.670xD

Options - breakdown order code:

Please state physical unit by order, e.g. ${ }^{\circ} \mathrm{C}$

Contents

1. Brief description 1
2. Assembly 2
3. Electrical connection 3
4. Functions and operation description 4
4.1. Programming software PM-TOOL 5
5. Setting up the device 6
5.1. Switching on 6
5.2. Standard parameterisation (flat operation level) 6Value assigment for triggering of the signal input
5.3. Programming interlock RUM 10
Activation/Deactivation of the programming interlock or change into the professional level respectively back into the flat operation level
5.4. Extended parameterisation (professional operation level) 10
5.4.1. Signal input parameter IMP 10
Value assigment for triggering of the singal input
5.4.2. General device parameter FCT 12
Higher device functions like min/max permanent, brightness control, as well as the control of the keyboard configuration
5.4.3. Safety parameter $C O D$ 15
Assignment of user and master code for locking or access to certain parameters like e.g. analog output and alarms, etc.
5.4.4. Analog output parameter OUT 16Analog output functions
5.4.5. Relay functions REL 18
Parameter for the definition of the setpoints
5.4.6. Alarm parameter RLI...RLY 21
Activator and dependencies of the alarms
6. Reset to factory settings 23
Reset of the parameter to the factory default settings
7. Alarms / Relays 23
Function principle of the switching outputs
8. Technical data 25
9. Safety advices 27
10. Error elimination 28

1. Brief description

The panel meter IM2-1T is a 5 -digit device for several thermocouple types and a visual threshold value monitoring via the display. The configuration happens via four front keys or via the optional PC software PM-TOOL. An integrated programming interlock prevents unrequested changes of the parameters and can be unlocked again by an individual code. Optional an analog output for further processing in the equipment is available. And on demand two free adjustable setpoints with which threshold values can be controlled and reported to a superior master display.
The electrical connection is carried out on the back side via plug-in terminals.
Selectable functions like e.g. the request of the min/max-value or a direct change of threshold value in operation mode complete the modern device concept.

2. Assembly

Please read the Safety advices on page 27 before installation and keep this user manual for future reference.

1. After removing the fixing elements, insert the device.
2. Check the seal to make sure it fits securely.
3. Click the fixing elements back into place and tighten the clamping screws by hand. Then use a screwdriver to tighten them another half a turn.

CAUTION! The torque should not exceed 0.1 Nm !
The dimension symbols can be exchanged before installation via a channel on the side!

3. Electrical connection

Type IM2-1TR5B.040X.570xD with a supply of 230 VAC
Type IM2-1TR5B.040X.670xD with a supply of 10-30 VAC

Options:

Relay 1
Relay 2

4. Function and operation description

Operation

The operation is divided into three different levels.
Menu level (delivery status)
This level is for the standard settings of the device. Only menu items which are sufficent to set the device into operation are displayed. To get into the professional level, run through the menu level and parameterise PROF under menu item RUM.

Menu group level (complete function volume)
Suited for complex applications as e.g. linkage of alarms, setpoint treatment, totaliser function etc. In this level function groups which allow an extended parameterisation of the standard settings are availabe. To leave the menu group level, run through this level and parameterise ULOC under menu item RUM.

Parameterisation level:

Parameter deposited in the menu item can here be parameterised. Functions, that can be changed or adjusted, are always signalised by a flashing of the display. Settings that are made in the parameterisation level are confirmed with [P] and thus saved. By pressing the [O]-key (zero-key) it leads to a break-off of the value input and to a change into the menu level. All adjustments are safed automatically by the device and it changes into operating mode, if no further key operation is done within the next 10 seconds.

Level	Key	Description
Menu level	P	Change to parameterisation level and deposited values.
	$\triangle \nabla$	Keys for up and down navigation in the menu level.
	O	Change into operation mode.
Parameterisation level	P	To confirm the changes made at the parameterization level.
	$\Delta \nabla$	Adjustment of the value / the setting.
	O	Change into menu level or break-off in value input.
Menu group level	P	Change to menu level.
	$\Delta \nabla$	Keys for up and down navigation in the menu group level.
	O	Change into operation mode or back into menu level.

Function chart:

Underline:

(P) Takeover
(0) Stop
(A) Value selection (+)

Value selection (-)

4.1 Parameterisation software PM-TOOL:

Part of the PM-TOOL are the software on CD and an USB-cable with device adapter. The connection happens via a 4-pole micromatch-plug on the back side of the device, to the PCside the connection happens via an USB plug.

System requirements: PC incl. USB interface
Software: Windows XP, Windows VISTA
With this tool the device configuration can be generated, omitted and saved on the PC. The parameters can be changed via the easy to handle program surface, whereat the operating mode and the possible selection options can be preset by the program.

CAUTION!

During parameterisation with connected measuring signal, make sure that the measuring signal has no mass supply to the programming plug. The programming adapter is galvanic not isolated and directly connected with the PC. Via polarity of the input signal, a current can discharge via the adapter and destroy the device as well as other connected components!

5. Setting up the device

5.1. Switching-on

Once the installation is complete, you can start the device by applying the voltage supply. First, check once again that all electrical connections are correct.

Starting sequence

For 1 second during the switching-on process, the segment test (88888) is displayed followed by an indication of the software type and, after that, also for 1 second the software version. After the starting sequence, the device switches to operation/display mode.

5.2. Standard parameterisation: (Flat operation level)

To parameterise the display, press the [P] key in operating mode for 1 second. The display then changes to the menu level with the first menu item TYPE.

Menu level Parameterisation level

Selection of the input signal, TYPE:
Default: TYP.L

Available are 9 types of thermocouple as input options (L, J, K, B, S, N, E, T, R). Confirm the selection with [P] and the display switches back to menu level.

Type of temperature measurement, UMIT:
Default: ${ }^{\circ} \mathrm{C}$

Select between ${ }^{\circ} \mathrm{C}$ and ${ }^{\circ} \mathrm{F}$ to display the temperature. Confirm the selection with $[P]$ and the display switches back to menu level.
Setting the decimal point / physical unit, DOT:
Default: 0.0

The decimal point and the physical unit of the device can be adjusted with [$\boldsymbol{\nabla}$] [$\mathbf{\Delta}$]. If e.g. temperature measurement was selected in ${ }^{\circ} \mathrm{C}$, one can select $0^{\circ} \mathrm{C}$ respectively $0.0^{\circ} \mathrm{C}$ in the parameterisation level. Confirm the selection with [P] and the display switches back to menu level.

Menu level Parameterisation level
Reference junction correction, OFF5:
Default: 0.0

The value for the sensor calibration is aligned from the smallest to the highest digit [$\boldsymbol{\nabla}$] [$\mathbf{\Delta}$] and confirmed digit per digit with [P]. After the last digit, the device changes back into menu level. During a temperature measurement in ${ }^{\circ} \mathrm{C}$ the value calibration can be adjusted between -20.0 and +20.0 and can be set during a measurement in ${ }^{\circ} \mathrm{F}$ between -36.0 and +36.0 . The adjusted offset temperature is added on the reference junction temperature and then allocated as a proportional thermo voltage. An alignment of the offset needs to be done, based on a reference temperature of the reference junction temperature (generally $10^{\circ} \mathrm{C} \ldots 40^{\circ} \mathrm{C}$). If the measurement is switched later on, the value is rounded.

Setting up the display time, $5 E[$:
Default: 1.0

The display time is set with [$\mathbf{\Delta}$] [$\mathbf{\nabla}$]. The display moves up in increments of 0.1 up to 1 second and in increments of 1.0 up to 10.0 seconds. Confirm the selection by pressing the [P] button. The display then switches back to the menu level again.
Selection of analog output, OUT.RR:
Default: 4-20

Three output signals are available: $0-10 \mathrm{VDC}, 0-20 \mathrm{~mA}$ and $4-20 \mathrm{~mA}$, with this function, the demanded signal is selected.

Setting up the final value of the analog output, OUT.EM:

Default: 850.0

The final value is adjusted from the smallest digit to the highest digit with [\mathbf{A}] [\mathbf{V}] and digit by digit confirmed with [P]. A minus sign can only be parameterised on the highest digit. After the last digit, the device changes back into menu level.

Menu level Parameterisation level

Setting up the initial value of the analog output, OUT.OF:
Default: -200.0

The final value is adjusted from the smallest digit to the highest digit with [$\mathbf{\Delta}$] [$\mathbf{\nabla}$] and digit by digit confirmed with [P]. A minus sign can only be parameterised on the highest digit. After the last digit, the device changes back into menu level.
Threshold values / limit values, $L-1-$:
Default: 200.0

This limit value defines the threshold, that leads to an activation / deactivation of the alarm.
Hysteresis for limit values, $\mathrm{HY}-1$:
Default: 0.0

The difference to the threshold value that causes the delay of the actuation of the alarm, is defined by the hysteresis.
Function if display falls below / exceeds limit value, FU-7:
Default: HIGH

The limit value undercut can be selected with LOUU (LOW = lower limit value) and limit value exceedance can be selected with HIGH (HIGH = upper limit value). If e.g. limit value 1 is on a switching threshold of 100 and occupied with function $H I G H$, the alarm will be activated by reaching the threshold. If the limit value is allocated to LOU, an alarm will be activated by undercut of the threshold.
Threshold values / limit values, Ll-z:
Default: 300.0

This limit value defines the threshold, that leads to an activation / deactivation of the alarm.

Menu level Parametrisation level

5.3. Programming interlock

Activation / Deactivation of the programming interlock or completion of the standard parametrisation with change into menu group level (complete function volume), RUM:
Default: ULOC

Choose between the deactivated key lock ULOC (works setting), the activated key lock LOC, or the menu group level PROF with the navigation keys [\mathbf{A}] [\mathbf{V}]. Confirm the selection with [P]. After this, the display confirms the settings with "- - - -", and automatically switches to operating mode. If LOC was selected, the keyboard is locked. To get back into the menu level, press [P] for 3 seconds in operating mode. Now enter the COOE (works setting 1234) that appears using [\mathbf{A}] [\mathbf{V}] plus [P] to unlock the keyboard. FRIL appears if the input is wrong.
To parameterise further functions, PROF needs to be set. The device confirms this setting with ,,- - - -,, and changes automatically into operation mode. By pressing [P] for approx. 3 seconds in operation mode, the first menu group IMP is shown in the display and thus confirms the change into the extended parametrisation. It stays as long activated as ULOC is entered in menu group RUM, thus the display is set back in standard parametrisation again.
5.4. Extended parametrisation (Professional operation level)

5.4.1. Signal input parameters

Menu group level

Menu level Parametrisation level
Selection of the input signal, TYPE:
Default: TYP.L

Available are 9 types of thermocouple as input options (L, J, K, B, S, N, E, T, R). Confirm the selection with [P] and the display switches back to menu level.

Menu level Parameterisation level

Type of temperature measurement, UMIT:

Default: ${ }^{\circ} \mathrm{C}$

Select between ${ }^{\circ} \mathrm{C}$ and ${ }^{\circ} \mathrm{F}$ to display the temperature. Confirm the selection with $[P]$ and the display switches back to menu level.

Setting the decimal point / physical unit, $D O T$:
Default: 0.0

The decimal point and the physical unit of the device can be adjusted with [$\boldsymbol{\nabla}$] [$\boldsymbol{\Delta}$]. If e.g. temperature measurement is selected in ${ }^{\circ} \mathrm{C}$, one can select $0^{\circ} \mathrm{C}$ respectively $0.0^{\circ} \mathrm{C}$ in the parameterisation level. Confirm the selection with [P] and the display switches back to menu level.

Reference junction correction, OFFS:
Default: 0.0

The value for the sensor calibration is aligned from the smallest to the highest digit [\mathbf{V}] [$\mathbf{\Delta}$] and confirmed digit per digit with [P]. After the last digit, the device changes back into menu level. During a temperature measurement in ${ }^{\circ} \mathrm{C}$ the value calibration can be adjusted between -20.0 and +20.0 and can be set during a measurement in ${ }^{\circ} \mathrm{F}$ between -36.0 and +36.0 . The adjusted offset temperature is added on the reference junction temperature and then allocated as a proportional thermo voltage. An alignment of the offset needs to be done, based on a reference temperature of the reference junction temperature (generally $10^{\circ} \mathrm{C} \ldots 40^{\circ} \mathrm{C}$). If the measurement is switched later on, the value is rounded.

Setting up the display time, SEC:
Default: 1.0

The display time is set with [\mathbf{A}] [\mathbf{V}]. The display moves up in increments of 0.1 up to 1 second and in increments of 1.0 up to 10.0 seconds. Confirm the selection by pressing the [P] button. The display then switches back to the menu level again.

Menu level Parametrisation level

Device undercut, DI.UMD:
Default: -19999

With this function the device undercut (\quad _ _ _ _) can be defined on a definite value. Exception is input type 4-20 $\mathbf{~ m A}$, it already shows undercut at a signal $<1 \mathrm{~mA}$, so a sensor failure is marked.

Display overflow, DI.OUE:
Default: 99999

With this function the display overflow (-----) can be defined on a definite value.

Back to menu group level, RET:

With [P] the selection is confirmed and the device changes into menu group level .-IMP-".

5.4.2. General device parameters

Menu group level

Menu level Parametrisation level
Display time, DISEC:
Default: 01.0

The display time is set up with [\mathbf{A}] [\mathbf{V}]. Thereby switch up to 1 second in increments of 0.1 and up to 10.0 seconds in increments of 1.0. With [P] the selection is confirmed and the device changes into menu level.

Brightness control, LIGHT:
Default: 15

The brightness of the display can be adjusted in 16 levels from $00=$ very dark to $15=$ very bright via this parameter or alternatively via the navigation keys from the outside. During the start of the device the level that is deposited under this parameter will always be used, even though the brightness has been changed via the navigation keys in the meantime.

Display flashing, FLRSH:

Default: MO

A display flashing can be added as additional alarm function either to single or to a combination of off-limit condition. With $M O$, no flashing is allocated.

5.4.3. Safety parameters

Menu group level

Menu level Parameterisation level

Adjustment of user code, U.CODE:
Default: 0000

 Via this code reduced sets of parameters OUT.LE and RL.LEV can be unlocked during locked programming. Further parameters are not available via this code. The U.CODE can only be changed via the correct input of the R.CODE (Master code).

Master code, R.CODE:

Default: 1234

By entering R.CODE the device will be released and all parameters unlocked.
Release/ lock analog output parameters, OUT.LE:
Default: RLL

Analog output parameters can be locked or released for the user:

- EN-OF, the initial or final value can be changed in operation mode.
- OUT.EO, the output signal can be changed from e.g. 0-20 mA to 4-20 mA or 0-10 VDC.
- RLL, analog output parameters are released.
- MO, all analog output parameters are locked.

5.4.4. Analog output parameters

Menu group level

Menu level Parameterisation level

Selection reference analog output, OUTPT:
Default: RCTUR

Qutpt P Rctur $\frac{\Delta}{\nabla}$ Ri nú $\frac{\Delta}{\nabla}$ IRHUR $\frac{\Delta}{\nabla}$ P

The analog output signal can refer to different functions, in detail this are the current measuring value, min-value or max-value. With [P] the selection is confirmed and the device changes into menu level.

Menu level	Parameterisation level
	Selection analog output, oUT.RR: Default: 4-20
But.ra	
$\uparrow \nabla$	Available are 3 output signals: $0-10 \mathrm{VDC}, 0-20 \mathrm{~mA}$ and the demanded signal can be selected.

Setting up the final value of the analog output, OUT.EM:
 Default: 850.0

The final value can be adjusted from the smallest to the largest digit with $[\mathbf{\Delta}][\mathbf{V}]$. Confirm each digit with [P]. A minus sign can only be parameterized on the highest value digit. After the last digit, the display switches back to the menu level.

Setting up the initial value of the analog output, OUT.OF:
Default: -200.0

The initial value can be adjusted from the smallest to the largest digit with [$\mathbf{\Delta}$] [$\mathbf{\nabla}$]. Confirm each digit with [P]. A minus sign can only be parameterized on the highest value digit. After the last digit, the display switches back to the menu level.

Overflow behavior, O.FLOU:
Default: EDGE

To recognise and evaluate faulty signals, e.g. by a controller, the overflow behavior of the analog output can be defined. As overflow can be seen either EDGE, that means the analog output runs on the set limits e.g. 4 mA and 20 mA, T0.OFF (input value smaller than initial value, analog output changes on e.g. 4 mA) or TO.EMD (higher than final value, analog output changes on e.g. 20 mA). If TO. IIIM or TO.MRX is set, the analog output changes on the smallest or highest possible binary value. This means that values of e.g. $0 \mathrm{~mA}, 0 \mathrm{VDC}$ or values higher than 20 mA or 10 VDC can be reached. With [P] the selection is confirmed and the device changes into menu level.
Menu level
\(\left.\begin{array}{|l|l|l}\hline \& -E L \& Parametrisation level

\hline\end{array}\right)\)| Back to menu group level, RET: |
| :--- |
| With [P] the selection is confirmed and the device changes into menu group level |

5.4.5. Relay functions

Menu group level

Menu level Parametrisation level

Alerting relay 1, REL-7:
Default: RL-1

Each setpoint (optional) can be linked up via 4 alarms (by default). This can either be inserted at activated alarms RLI/Y or deactivated alarms RLMI/ . If LOGIC is selected, logical links are available in the menu level LOG-1 and com -1. Access to these two menu levels is via LOGIC, at all other selected functions, these two parameters are overleaped. Via OM/ OFF the setpoints can be activated/deactivated, in this case the output and the setpoint display are set/not set on the front of the device. With [P] the selection is confirmed and the device changes into menu level.

With [P] the selection is confirmed and the device changes into menu level.
Alarms for relay 1, con-l:
Default: 8.1

The allocation of the alarms to relay 1 happens via this parameter, one alarm or a group of alarms can be chosen. This parameter can only be selected if LOGIC was selected under REL-l. With $[\mathrm{P}]$ the selection is confirmed and the device changes into menu level.

Alerting relay 2, REL-2:

Default: RL-z

Each setpoint (optional) can be linked up via 4 alarms (by default). This can either be inserted at activated alarms RLI/Y or deactivated alarms RLMITY. If LOGIC is selected, logical links are available in the menu level $L O G-1$ and cOM-1. Access to these two menu levels is via LOGIC, at all other selected functions, these two parameters are overleaped. Via $O M / O F F$ the setpoints can be activated/deactivated, in this case the output and the setpoint display are set/not set on the front of the device. With $[P]$ the selection is confirmed and the device changes into menu level.

Menu level Parameterisation level

Logic relay 2, LOG-2:
Default: $O R$

Here, the switching behavior of the relay is defined via a logic link, the following schema describes these functions with inclusion of $\operatorname{RL-1}$ and $8 L-2$: This parameter can only be selected if LOGIC was selected under REL-1.

ar	A1 v A2	As soon as a selected alarm is activated, the relay operates. Equates to operating current principle.
nar	$A \overline{1 \vee A} 2=A \overline{1} \wedge \overline{A 2}$	The relay operates only, if no selected alarm is active. Equates to quiescent current principle.
Rind	$\mathrm{A} 1 \wedge \mathrm{a} 2$	The relay operates only, if all selected alarms are active.
nind	$\overline{A 1 \wedge A} 2=\overline{A 1} \vee \overline{A 2}$	As soon as a selected alarm is not activated, the relay operates.

With [P] the selection is confirmed and the device changes into menu level.
Alarms for relay 2, com-z:
Default: 8.2

The allocation of the alarms to relay 1 happens via this parameter, one alarm or a group of alarms can be chosen. This parameter can only be selected if LOGIC was selected under REL-7. With [P] the selection is confirmed and the device changes into menu level.

Back to menu group level, RET:

With [P] the selection is confirmed and the device changes into menu group level ..-REL-".

5.4.6. Alarm parameters

Menu group level

Parametrisation level
Dependency of alarm.1, RLRM.1:
Default: ICTUS

Menu level Parameterisation level

Function for threshold value exceedance/undercut, $F U-7$:
 Default: HIGH

Abstract

The limit value undercut can be selected with LOUU (LOW = lower limit value) and limit value exceedance can be selected with $H I G H$ (HIGH = upper limit value). If e.g. limit value 1 is on a switching threshold of 100 and occupied with function $H I G H$, the alarm will be activated by reaching the threshold. If the limit value is allocated to LOU, an alarm will be activated by undercut of the threshold.

Switching-on delay, TON-1:

Default: 000

For limit value 1 one can preset a delayed switching-on of 0-100 seconds.
Switching-off delay, TOF-1:
Default: 000

For limit value 1 one can preset a delayed switching-off of $0-100$ seconds.

Back to menu group level, RET:

With [P] the selection is confirmed and the device changes into menu group level .,RLI-".

The same applies to -RLZ- to -RLY-.

Programming interlock:

Menu-group level

6. Reset to factory settings

To return the unit to a defined basic state, a reset can be carried out to the default values.
The following procedure should be used:

- Switch off the power supply
- Press [P]-button
- Switch on voltage supply and press [P]-button until ..-...-" is shown in the display.

With reset, the default values of the program table are loaded and used for subsequent operation. This sets the unit back to the state in which it was supplied.

Caution! All application-related data are lost.

7. Alarms / Relays

This device has 4 virtual alarms that can monitor one limit value in regard of an undercut or exceedance. Each alarm can be allocated to an optional relay output S1-S2; furthermore alarms can be controlled by events like e.g. min/max-value.

Function principle of alarms / relays	
Alarm / Relay \mathbf{x}	Deactivated, instantaneous value, min/max-value or an activation via the [O]-key.
Switching threshold	Threshold / limit value of the change-over.
Hysteresis	Broadness of the window between the switching thresholds.
Working principle	Operating current / Quiescent current

Operating current

By operating current the alarm S1-S2 is off below the threshold and on on reaching the threshold.

Quiescent current

By quiescent current the alarm $\mathrm{S} 1-\mathrm{S} 2$ is on below the threshold and switched off on reaching the threshold.

Switching-on delay

The switching-on delay is activated via an alarm and e.g. switched 10 seconds after reaching the switching threshold, a short-term exceedance of the switching value does not cause an alarm, respectively does not cause a switching operation of the relay. The switching-off delay operates in the same way, keeps the alarm / the relay switched longer for the parameterised time.

8. Technical data

Housing			
Dimensions	96x48x70 mm (BxHxD)		
	$96 \times 48 \times 89 \mathrm{~mm}(\mathrm{BxHxD})$ including plug-in terminal		
Panel cut-out	$92.0^{+0.8} \times 45.0^{+0.6} \mathrm{~mm}$		
Wall thickness	up to 15 mm		
Fixing	screw elements		
Material	PC Polycarbonate, black, UL94V-0		
Sealing material	EPDM, 65 Shore, black		
Protection class	standard IP65 (Front), IP00 (Back side)		
Weight	approx. 200 g		
Connection	plug-in terminal; wire cross-section up to $2.5 \mathrm{~mm}^{2}$		
Display			
Digit height	14 mm		
Segment colour	red (optional green, orange or blue)		
Display range	-19999 up to 99999		
Setpoints	one LED per setpoint		
Overflow	horizontal bars at the top		
Underflow	horizontal bars at the top		
Display time	0.1 to 10.0 seconds		
Input	Measuring range	Measuring error (at 1 second measuring time)	Digit
Type L (Fe-CuNi ald type)	-200.0..-900.0º	2 K	± 1
Type J (Fe-CuNi)	$-210.0 \ldots 1200.0^{\circ} \mathrm{C}$	2 K	± 1
Type K (NiCr-NiAL)	$-270.0 \ldots 1372.0^{\circ} \mathrm{C}$	2 K	± 1
Type B (Pt30Rh-Pt6Rh)	$80.0 \ldots 1820.0^{\circ} \mathrm{C}$	2 K	± 1
Type S (Pt10Rh-Pt)	$-50.0 \ldots 1768.0^{\circ} \mathrm{C}$	2 K	± 1
Type N ($\mathrm{NiCrSi-NiSi)}$	$-270.0 \ldots 1300^{\circ} \mathrm{C}$	2 K	± 1
Type E (NiCr-CuNi)	$-270.0 \ldots 1000.0^{\circ} \mathrm{C}$	2 K	± 1
Type T (Cu-Cu-Ni)	-270.0..400.0 ${ }^{\circ} \mathrm{C}$	2 K	± 1
Type R (Pt13Rh-Pt)	$-50.0 \ldots 1768.0^{\circ} \mathrm{C}$	2 K	± 1
Characteristic line error	< ± 1		
Reference junction	Thermistor		

Accuracy	
Temperature drift	$100 \mathrm{ppm} / \mathrm{K}$
Measuring time	0.1...10.0 seconds
Measuring principle	U/F-conversion
Resolution	$0.1{ }^{\circ} \mathrm{C}$ or $0.1^{\circ} \mathrm{F}$
Output	
Analog output	0/4-20 mA / burden 350 Ohm; 0-10 VDC / burden 10 kOhm, 16 bit
Switching outputs	
Relay with change-over contacts Switching cycles	250 VAC / 5 AAC; 30 VDC / 5 ADC 30×10^{3} at 5 AAC, 5 ADC ohm resistive burden 10×10^{6} mechanically Diversification according to DIN EN50178 / Characteristics according to DIN EN60255
Power supply	230 VAC $50 / 60 \mathrm{~Hz}, \pm 10 \%$ max. 10 VA 10-30 VDC galv. isolated, max. 4 VA
Memory	EEPROM
Data life	≥ 100 years at $25^{\circ} \mathrm{C}$
Ambient conditions	
Working temperature	0... $50^{\circ} \mathrm{C}$
Storing temperature	$-20 \ldots 80^{\circ} \mathrm{C}$
Weathering resistance	relative humidity $0-80 \%$ on years average without dew
EMV	EN 61326
CE-sign	Conformity according to directive 2014/30/EU
Safety standard	According to low voltage directive 2014/35/EU EN 61010; EN 60664-1

9. Safety advices

9. Safety advices

Please read the following safety advices and the assembly chapter 2 before installation and keep it for future reference.

Proper use

The IM2-1T-device is designed for the evaluation and display of sensor signals.

Attention! Careless use or improper operation can result in personal injury and/or cause damage to the equipment.

Control of the device

The panel meters are checked before dispatch and sent out in perfect condition. Should there be any visible damage, we recommend close examination of the packaging. Please inform the supplier immediately of any damage.

Installation

The IM2-1T-device must be installed by a suitably qualified specialist (e.g. with a qualification in industrial electronics).

Notes on installation

- There must be no magnetic or electric fields in the vicinity of the device, e.g. due to transformers, mobile phones or electrostatic discharge.
- The fuse rating of the supply voltage should not exceed a value of 0.5A N.B. fuse!
- Do not install inductive consumers (relays, solenoid valves etc.) near the device and suppress any interference with the aid of RC spark extinguishing combinations or freewheeling diodes.
- Keep input, output and supply lines separate from one another and do not lay them parallel with each other. Position "go" and "return lines" next to one another. Where possible use twisted pair. So, you receive best measuring results.
- Screen off and twist sensor lines. Do not lay current-carrying lines in the vicinity. Connect the screening on one side on a suitable potential equaliser (normally signal ground).
- The device is not suitable for installation in areas where there is a risk of explosion.
- Any electrical connection deviating from the connection diagram can endanger human life and/or can destroy the equipment.
- The terminal area of the devices is part of the service. Here electrostatic discharge needs to be avoided. Attention! High voltages can cause dangerous body currents.
- Galvanic isolated potentials within one complex need to be placed on an appropriate point (normally earth or machines ground). So, a lower disturbance sensibility against impacted energy can be reached and dangerous potentials, that can occur on long lines or due to faulty wiring, can be avoided.

10. Error elimination

	Error description	Measures
1.	The unit permanently indicates overflow. - The input has a very high measurement, check the measuring circuit. The input is open.	
2.	The unit permanently shows underflow.	- The input has a very low measurement, check the measuring circuit.
The input is open.		

