

01/16 10783510 WEB D cod.MF9600.

Nemo 96 HD

ICS Schneider Messtechnik GmbH Briesestraße 59 D-16562 Hohen Neuendorf / OT Bergfelde

Tel.: 03303 / 504066 Fax: 03303 / 504068 info@ics-schneider.de www.ics-schneider.de **Multimessung**

Energiezählen

Sie quantifizieren den

Bedingungen zu melden

gleichzeitig an

Sie messen und zeigen verschiedene Größen

Index

Anschlußbild	Seite 3
Installationsanweisungen	Seite 3
Programmierung	Seiten 4-5
Phasenfolgediagnostik	Seite 5
Stufe 1 Kennwort 1000	Seiten 6-9
Sfufe 2 Kennwort 2001	Seite 10
Stufe 3 Kennwort 3002	Seite 19
Anzeige	Seite 11
Reset	Seite 11
Dreiphasen-4 Leiter	Seiten 12-13
Dreiphasen-3 Leiter	Seiten 14-15
Einphasen	Seiten 16-17
Hilfsspannung	Seite 18
Wahlmodule	Seite 18
Einsetzen der Wahlmodule	Seite 19
Werkeinstellungen	Seite 20

Energieverbrauch Kommunikation Sie teilen die Fernmessungen mit Sie verbinden über Schnittstelle verschiedenen Kommunicationsmodus Messung und Kontrolle Sie messen und greifen ein, um besondere

Die technische Unterlagen für das Produkt ist auf der Site www.imeitaly.com in dem Raum "Documentazione tecnica" verfügbar. Tippen in dem Feld "Codice Nota Tecnica: NT680"ein.

Anschlußbild

S 1000/266 3-2E

ACHTUNG!

Verbinden die Hilfsspannung mit Klemmen 20 und 21

Installationsanweisungen

Der Einbau dieses Gerätes muss nur von Fachkräften ausgeführt.

Bevor das Gerät eingebaut wird, muss das Typenschild (Mess-Spannung, Mess-Strom, Hilfsspannung, Frequenz) mit den tatsächlichen Netzgegebenheiten verglichen werden. Der Anschluss erfolgt gem. Anschlussbilder. Falschanschluss führt zu erheblichen Anzeigefehlern! Es können sogar Beschädigungen auftreten.

Wenn das Gerät angeschlossen ist, ergänzen die Installation mit der Gerätskonfiguration.

Programmierung

Das Menü ist auf zwei Stufen, mit 3 verschiedenen numerischen Kennworten geschützt. Die Programmierung wird durch **Fronttastatur Berührungsbildschirm, 4 Tasten** gemacht

Während der Programmierung halten Sie 2 Tasten gleichzeitig gedrückt um Zurückzukehren

Ein- und Austritt ohne Speicherung

Stufe 1 Kennwort = 1000

E-T

P-O-S

1.0 Kennwort

P-O-S

- **1.1** Kundespezifische Anzeigeseite
- **1.2** Anschluss
- **1.3** Stromintegrationszeit und mittlere Leistung
- 1.4 Anzeigekontrast
- **1.5** Hintergrundbeleuchtung der Anzeige
- 1.6 Nennstrom
- 1.7 Zählungsstart des Betriebsstundenzählers

Stufe 2 Kennwort = 2001

- 2.0 Kennwort
- 2.1 Externe CT und VT-Verhältnis

Stufe 3 Kennwort = 3002

3.0 Kommunikationsprotokoll

Programmierbare Parameter

Stufe 1 Kennwort = 1000

1.1 Kundespezifische Anzeigeseite

Eine Anzeigeseite kann durch den Anwender selbst konfiguriert werden. Die oberen drei Zeilen können mit verschiedenen Messgrößen (gem. Tabelle Seite 7) belegt werden. Wird diese Seite vom Anwender konfiguriert, erscheint sie als Standardanzeigeseite nach dem Einschalten des Gerätes (als Alternative zur Spannungsanzeige)

1.2 Anschluss

Das Gerät kann im 4-Leiter Drehstromnetz sowie im Wechselstromnetz betrieben werden.

Folgende Anschlussarten sind möglich:

Symbol	Leitiung	Laden	N. der externen CT	Anschlussbild	Anschluss
1N1E	Wechselstromnetz	-	1	S 1000/265	
3-1E	3-Leiter Drehstromnetz	Beliebig	1	S 1000/315	
3N1E	4-Leiter Drehstromnetz	Beliebig	1	S 1000/316	
3-2E	3-Leiter Drehstromnetz	Unbeliebig	2	S 1000/266	Aron L1 - L3
3-3E	3-Leiter Drehstromnetz	Unbeliebig	3	S 1000/267	
3N3E	4-Leiter Drehstromnetz	Unbeliebig	3	S 1000/268	

1.3 Stromintegrationszeit und mittlere Leistung

Wahlbare Integrationszeit: 5, 8, 10, 15, 20, 30, 60 Minuten Die gewahlte Zeit ist gultig sowohl für den Strom als auch die mittlere Leistung

1.4 Anzeigekontrast

4 Werte um den Anzeigekontrast einzustellen

1.5 Hintergrundbeleuchtung der Anzeige

Die 4 wählbare Stufen (0 – 35 – 70 – 100%) zeigen die Beleuchtungsprozentsatz der Anzeige mit Normalbedingungen (Tastatur nicht aktiv für mehr als 20 Sekunden). Beim Drücken beliebige Taste, wird die Anzeige ganz beleuchtet (100%). Mit geladenem Wert = 100%, ist die Beleuchtung beständig und ändert es nicht mit dem Drücken einer Taste.

1.6 Nennstrom (externer Sekundärstromwandler)

Nennwert 1A (externer CT mit Sekundär /1A) oder 5A (externer CT mit Sekundär /5A)

1.8 Zählungsstart des Betriebsstundenzählers

Wählen Sie die Messgröße, die die Zählung des Betriebsstundenzählers starten soll: Spannung oder Leistung Spannung: Phasenspannung > 10V Leistung: Dreiphasennennwirkleistung

Programmierbarer Wert : 0...50%Pn Pn = Dreiphasennennwirkleistung = Nenndrehspannung Un x Nennstrom In $x\sqrt{3}$ Un: 400V In: 1A oder 5A Pn = 400V x5A x $\sqrt{3}$ = 3464W oder 400V x1A $x\sqrt{3}$ = 692,8W

Stufe 2 Kennwort = 2001

2.1 Externe CT und VT Übersetzung

- Ct = Primär/Sekundärverhältnis des externen CT Wandler (z.B CT 800/5A Ct = 160) Auswahl im Feld 1...9999 (höchste Primärstrom 50kA/5A - 10kA/1A)
- Vt = Primär/Sekundärverhältnis des externen VT Wandler (z.B. VT 600/100V vt = 6) Auswahl im Feld 1,00...10,00 00 (höchste Primärspannung TV 1200V) Für direkten Spannungsanschluss (ohne externer VT Wandler) stellen Vt=1,00 ein. Bei Veränderung von Ct und/oder Vt werden automatisch die Zählerstände auf Null zurückgesetzt.

Stufe 3 Kennwort = 3002

3.0 Kommunikationsprotokoll (siehe Punkt 3 Seite19).

Phasenfolgediagnostik

In der Software der Vorrichtung gibt es einen Diagnostik- und Reparaturalgorithmus der Voltmeter- und Strommessereinschaltungsfolge eingeführt.

Auf Wunsch kann diese Funktion durch ein Kennwort betätigt sein. Durch die Software gestattet es die Verdrahtungsfolge anzuzeigen und zu ändern, unter der Bedingung, dass die folgende Bedingungen beachtet werden:

- 1) Der Null-Leiter (in dem 4-Leiter Netz) an der entsprechenden Klemme richtig angeschlossen ist (normalweise Klemme n. 11).
- 2) Gibt es kein Kabelkreuz zwischen verschiedenen Stromwandlern (z.B. auf der Phase 1 der Vorrichtung gibt es einen Kabel, den aus dem Stromwandler 1 kommt, und auf dem anderen einen Kabel des Stromwandler 2).
- 3) Der Leistungsfaktor für jede Phase zwischen 1 und 0,5 induktive Belastung eingeschlossen ist. Siehe www.imeitaly.com "TECHNICAL SUPPORT".

Die kundenspezifische Seite wird die Standardanzeige, wenn Sie das Gerät anschalten.

Bemerkung

Wenn Sie nicht die kundenspezifische Seite konfiguerieren wollen, können Sie direkt zum **Punkt 1.2 (Anschlüss)** überspringen, beim Drücken mehrmals die die **Taste**

📀 📰 🎯 🕗

Ziele 1 **Tabelle 1** ' Lin Iv **Spannung L1** Pro9rAD ¹² L in Lv Spannung L1-L2 ProgrAA ¹ L in L i Strom L1 ProgrAD Neutralleiterstrom s L in L A ProgrAD s Lin I w **Drehstrom-Wirkleistung** ProgrAD **Drehstrom-Blindleistung** 5 L 10 VAr ProgrAA s L in I va **Drehstrom-Scheinleistung** ProgrAD Wirkleistung L1 ¹ Lin L w ProgrAD **Blindleistung L1** 1 L in I var ProgrAD Scheinleistung L1 1 Lin Iva ProgrAA **Drehstrom-Leistungsfaktor** s L in l PF

Nemo 96 HD

Ziele 3	Tabelle 3
1 L in 3 A Pro9r80	Spannung L3
¹Li∩∃ w Pro9rRN	Spannung L3-L1
³ L in 3 va Pro3rRN	Strom L3
⁸ L in 3 var Pro 9 r RD	Drehstrom-Wirkleistung
⁸ L in 3 w Pro5r80	Drehstrom-Blindleistung
E IN B VA Program	Drehstrom-Scheinleistung
E in B var Proßeßn	Wirkleistung L3
₽ Lin∃ w Pro9r80	Blindleistung L3
³ L in∃ ₄ Pro9r80	Scheinleistung L3
³¹ L in 3 v Pro9r80	Wirkleistung L1
° L in3v Pro9r80	Strom L1

Pro9rRN 01/16 10783510 WEB D cod.MF9600.

1.2 Anschluss

595 3n 3E

Wählen Sie die gewünschte Anschlussart und erinnern Sie sich an dass, der Anschluss gem. Anschlussbilder erfolgt. Folgende Anschlussarten sind möglich:

Symbol	Leitiung	Laden	N. der externen CT	Anschlussbild	Anschluss
1N1E	Wechselstromnetz	-	1	S 1000/265	
3-1E	3-Leiter Drehstromnetz	Beliebig	1	S 1000/315	
3N1E	4-Leiter Drehstromnetz	Beliebig	1	S 1000/316	
3-2E	3-Leiter Drehstromnetz	Unbeliebig	2	S 1000/266	Aron L1 - L3
3-3E	3-Leiter Drehstromnetz	Unbeliebig	3	S 1000/267	
3N3E	4-Leiter Drehstromnetz	Unbeliebig	3	S 1000/268	

1.4 Anzeigekontrast

4 Werte um den Anzeigekontrast einzustellen

1.5 Hintergrundbeleuchtung der Anzeige

Die 4 wählbare Stufen (0 – 30 – 70 – 100%) zeigen die Beleuchtungsprozentsatz der Anzeige

- 🔺 🔻 🛛 wählt die Beleuchtungsstufe
 - 」 bestätigt

1.3 Stromintegrationszeit und mittlere Leistung

Wahlbare Integrationszeit: 5, 8, 10, 15, 20, 30, 60 Minuten Die gewählte Zeit ist gultig sowohl für den Strom als auch die mittlere Leistung.

▲ ▼ wählt den Zeitwert ↓ bestätigt

1.6 Nennstrom (externer Sekundärstromwandler)

Nennwert 1A (externer CT mit Sekundär /1A) oder 5A (externer CT mit Sekundär /5A)

- ▲ ▼ wählt 1A oder 5A
- bestätigt

1.7 Zählungsstart des Betriebsstundenzählers

Wählen Sie die Messgröße, die die Zählung des Betriebsstundenzählers starten soll: **Spannung oder Leistung**

1.7a Zählungsstart mit Spannung

Spannung: Zählunggstart mit Phasenspannung > 10V

wählt Spannung oder Leistung bestätigt

1.7b Zählungsstart mit Leistung

Leistung: Zählunggstart mit programmierbaren Dreiphasenwirkleistung

0...50%Pn

rückt den Cursor erhöht/ sinkt den eingestellten Wert bestätigt

Bestätigung der programmierten Daten

2.1 Verhältnis des externen CT

- Ct = Primär/Sekundarverhältnis des externen CT (z.B. CT 800/5A Ct = 160) Auswahl im Feld 1...9999 (höchste Primärstrom 50kA/5A - 10kA/1A)
- > rückt den Cursor
 ▲ ▼ erhöht/ sinkt den eingestellten Wert
 → bestätigt

Verhältnis des externen VT

- Vt = Primär/Sekundärverhältnis des externen VT (z.B. VT 600/100V Vt = 6) Auswahl im Feld 1,00...10,00 (höchste Primärspannung VT 1200V) Für direkten Spannungsanschluss (ohne externen VT) stellen Vt=100 ein. Bei Veränderung von Ct und/oder Vt werden die Energiezähler automatisch auf Null zurückgesetzt.
 - rückt den Cursor
 - erhöht/ sinkt den eingestellten Wert
 - ← bestätigt

Anzeige

Die Anzeige ist in vier Hauptgruppen unterteilt. Diese sind durch Drücken der entsprechenden Taste zugänglich.

Reset

Beim Drücken die Funktionstasten können Sie die Anzeigeseiten rückstellen.:

3N3E - 3N1E

U		1	
1 XXXX v 2 XXXX v 3 XXXX v XXXXXXX KMB	Phasenspannung L1-N Phasenspannung L2-N Phasenspannung L3-N Wirkenergie	1 XXXX A 2 XXXXX A 3 XXXXX A XXXXXXXX Wh	Phasenstrom L1 Phasenstrom L2 Phasenstrom L3 Wirkenergie
12 XXXX v 23 XXXX v 31 XXXXX v XXXXXXXX kxeth	Verkettete Spannung L1-L2 Verkettete Spannung L2-L3 Verkettete Spannung L3-L1 Blindenergie	1 XXXXX A 2 XXXXX A 3 XXXXXX A XXXXXXXX kvarh	Mittlerer Phasenstrom L1 Mittlerer Phasenstrom L2 Mittlerer Phasenstrom L3 Blindenergie
1 XXXX v 2 XXXX v 3 XXXX v 11 m	Phasenspannung L1-N Phasenspannung L2-N Phasenspannung L3-N U E-T Mindestwert	1 ΧΧΧΧ Α 2 ΧΧΧΧ Α 3 ΧΧΧΧ Α <i>ΧΧΧΧΧΧΧ</i> ^{ΚWh}	Spitze des mittleren Phasenstromes L1 Spitze des mittleren Phasenstromes L2 Spitze des mittleren Phasenstromes L3 Wirkenergie
1 XXXX v 2 XXXX v 3 XXXX v NRS	Reset Phasenspannung L1-N Phasenspannung L2-N Phasenspannung L3-N U E·T Höchstwert	E XXXX A E XXXXX A XXXXXXX beach	Neutraler Strom Stromsumme <u>I1+I2+I3</u> 3 Blindenergie
1 XXXXX % 2 XXXXX v THD XXXXXXXX Wh	Reset Oberwellenverzerrung Phasenspannung Wirkenergie	1 XXXXX % 2 XXXXX THD 3 XXXXXXX ATHD XXXXXXXXX W	Oberwellenverzerrung Phasenstrom Wirkenergie

📀 📰 🌀 🕢

3N3E - 3N1E

Nemo 96 HD

3-3E 3-2E 3-1E

U		I. Contraction of the second se
12 XXXX v 23 XXXX v 31 XXXX v XXXXXXX booth	Verkettete Spannung L1-L2 Verkettete Spannung L2-L3 Verkettete Spannung L3-L1 Blindenergie	1 XXXX A Phasenstrom L1 2 XXXX A Phasenstrom L2 3 XXXXX A Phasenstrom L3 XXXXXXXX Wirkenergie Wirkenergie
12 ΧΧΧΧ ν 23 ΧΧΧΧ ν 31 ΧΧΧΧ ν Π ιη	Verkettete Spannung L1-L2 Verkettete Spannung L2-L3 Verkettete Spannung L3-L1 Mindestwert	1 XXXX A Mittlerer Phasenstrom L1 2 XXXX A Mittlerer Phasenstrom L2 3 XXXXX A Mittlerer Phasenstrom L3 XXXXXXXX Lent Blindenergie
12 XXXX v 23 XXXX v 31 XXXX v NR5	Verkettete Spannung L1-L2 Verkettete Spannung L2-L3 Verkettete Spannung L3-L1 Höchstwert	1 XXXX A 2 XXXX A 3 XXXXX A 3 XXXXXXXXX A XXXXXXXXXX IVIN Wirkenergie
12 XXXX % 23 XXXXX 31 XXXX v THU	6 Oberwellenverzerrung verkettete Spannung	1 XXXX % 2 XXXXX Misk constraint 3 XXXXXXXX Misk constraint

3-3E 3-2E 3-1E

Nemo 96 HD

1N1E

⊗ ₩ 6

1N1E

Hilfsspannung

Klemmen 20 und 21

Hilfsspannung: AC oder DC Stromversorgung, die notwendig für den richtigen Betrieb der Vorrichtung ist.

Bitte kontrollieren Sie, dass die verfügbare Versorgungsspannung mit den Versorgungsspannung auf dem Typenschild (Spannungswert und eventuelle Frequenz) übereinstimmt. Wo eine Doppelspannung (z.B. 80...265V AC / 110...300 V DC) angegeben ist, bedeutet dass, das Gerät mit Wechselspannung 80...265V AC oder Gleichspannung 110...300V DC gespeist werden kann.

Im Falle von Gleichspannungsversorgung, bitte die angezeigte Polaritäten 20+ und 21beachten

F : 1A gG

Wahlmodule

An diesem Gerät können Sie bis vier Wahlmodule anschießen.

Die Kommunikationsmodule sind alternativ zueinander (sie können nicht zugleich bestehen) Für die Optionen Impulsausgang, Analogausgang und Alarme können Sie eins oder zwei Module anschließen.

Auf der folgenden Tabelle werden die Zusammensetzungsbindungen der Module gezeigt: Max. Modulzahl und Anschlusstellung (siehe Tabelle)

Kode	Beschreibung	Max.	Max. Stellung				Firmware ²	Technische	
Noue	, beschilding		Α	B	С	D	Timware	Note	
IF96001	RS485 Kommunikation	1	•				Alle	NT675	
IF96002	RS232 Kommunikation	1	•				Alle	NT676	
IF96003	2 Ausgänge Pulsenergien	2	•	•	•	•	Alle	NT677	
IF96004	2 Analogausgänge 0/420mA	2			•	•	1.08	NT678	
IF96005	2 Alarm	2	•	•	•	•	Alle	NT679	
IF96006	006 Neutralleiterstrom 1 •			1.08	NT683				
IF96007A	A PROFIBUS Kommunikation 1 •			3.12	NT682				
IF96009	LONWORKS Kommunikation 1 •			2.00	NT684				
IF96010	I/O 2 Eingänge SPST - 2 Ausgänge SPST	2 Eingänge SPST - 2 Ausgänge SPST 2			•	•	2.06	NT702	
IF96011	I/O 2 Eingänge 12-24Vcc - 2 Ausgänge SPST	e SPST 2			•	•	2.06	NT703	
IF96012	Speicherung der Energiewerte - RS485	5 1					2.06	NT704	
IF96013	MBUS Kommunikation	1 •					2.06	NT707	
IF96014	BACNET Kommunikation	1 •					2.08	NT743	
IF96015	ETHERNET Kommunikation	1 •				2.00	NT785		
IF96016	Temperaturmessung	1				•	2.30	NT810	

Bei der Verwendung der RS485 Kommunikation (wo vorgesehen) oder eines IF96001(RS485)

oder IF96002 (RS232) Kommunikationsmoduls, ist es möglich direkt vor Ort mit einem Personal-Computer und der Herunterladen-Software, die Firmware-Version aktualisieren.

ACHTUNG!

Das Moduleinsetzen muss mit ungespeistem Gerät ausgeführt werden.

Einsetzen der Wahlmodule

Schalten das Gerät aus

Der Wahlmodule einsetzen

Versorgen das Gerät und warten auf einige Sekunden für die Erkennung Für die Parameterprogrammierung jedes Modul, bitte das entsprechende Handbuch nachschlagen

3.0 Kennwort 3002

Kommunikation Protocol

Für die Kommunikationsmodule (siehe Tabelle) müssen Sie das Kommunikationsprotokoll einstellen.

Stellen Kennwort 3002 ein und wählen das Kommunikationsprotokoll (siehe Tabelle).

*Für die Einzelheiten, bitte auf die Kommunikationsprotokoll Bezug nehmen

Werkeinstellung

Kennwort 1000

Kundespezifische Anzeigeseite ¹Lin1v Spannung L1 ²Lin2v Spannung L2 ³Lin3v Spannung L3 Anschluss: 3n3E vierfädig 3 Systeme Leitung Mittlere Zeit: 5m 5 Minute Contrast: 03 Stufe 3 Hintergrundbeleuchtung: 30% Nennstrom: 5A Betriebsstundenzähler: U Spannungsstart

Kennwort 2001

CT-Verhältnis: 0001 direktes Anschluss VT-Verhältnis: 01,00 direktes Anschluss

Kennwort 3002

20

Protokoll: MdbS Modbus RTU

ICS Schneider Messtechnik GmbH Briesestraße 59 D-16562 Hohen Neuendorf / OT Bergfelde

Tel.: 03303 / 504066 Fax: 03303 / 504068 info@ics-schneider.de www.ics-schneider.de 01/16 10783510 WEB D cod.MF9600.

ICS Schneider Messtechnik GmbH Briesestraße 59 D-16562 Hohen Neuendorf / OT Bergfelde

Tel.: 03303 / 504066 Fax: 03303 / 504068 info@ics-schneider.de www.ics-schneider.de

Index

Wiring Diagrams	page 3
Mounting instructions	page 3
Programming	page 4-5
Phase sequence diagnostic	page 5
Level 1 Password 1000	page 6-9
Level 2 Password 2001	page 10
Level 3 Password 3002	page 19
Display	page 11
Reset	page 11
3-phase 4 wires	page 12-13
3-phase 3 wires	page14-15
Single-phase	page 16-178
Auxiliary Supply	page 18
Optional Modules	page 18
Connection optional modules	page 19
Factory settings	page 20

 They communicate the measurements carried at a distance
 3-phase 3 wires

 Interface different ways of communication
 Single-phase

 Measuring and Monitoring
 Optional Modules

 They measure and
 Connection optional modules

They measure and report specific involved conditions

Multimetering

more quantities

They measure and display simultaneously

Energy counting

energy consumption

Communication

They quantify the

Wiring Diagrams

S 1000/266 3-2E

ATTENTION!

Aux. supply must be connected to terminals 20 and 21.

F : 1A gG

Mounting instructions

Mounting of this equipment must be carried out just by skilled personnel.

Please make sure that the data on the label (measuring voltage, measuring current, extra supply voltage, frequency) correspond to the network on which the meter must be connected. In the wiring scrupulously respect the wiring diagram; an error in connection unavoidably leads to wrong measurements or damages to the meter.

When the meter is connected, conclude the mounting with the configuration as described in the user's manual.

Programming

Menu is divided on two levels, protected by 3 different numerical passwords. Programming is carried out **by front 4-key touch screen keyboard**

Moves the cursor

Increases the loaded value In the pages with choice among the fixed values, it scrolls the loadable values

Decreases the loaded value

In the pages with choice among the fixed values, it scrolls the loadable values

Confirms

During programming, keep simultaneously pressed **2 keys** for:

One page backward

Input and output without save

Level 1 Password = 1000

P-Q-S

- 1.0 Password
- **1.1** Customized display page
- 1.2 Connection
- **1.3** Current delay time and average power
- **1.4** Display contrast
- 1.5 Backlighted display
- **1.6** Rated current
- **1.7** Run hour meter count start

Level 2 Password = 2001

2.0 Password

2.1 External VT and CT transformers

Level 3 Password = 3002

3.0 Communication protocol

Programmable Parameters

Level 1 Password = 1000

1.1 Customized display page

Possibility to load a costumized display page on which you can choose which quantities the three display lines must show.

If the user loads a customized page, this will become the standard display when the meter is switched on (as alternative to the one showing the line voltages).

The selectable displays for the customized page are mentioned in the tables at page 7

1.2 Connection

The meter can be used for single phase or three phase 3- and 4-wire network. **The selectable connections are:**

Symbol	Line	Load	n° external CT'S	Wiring	Connection
1N1E	Sigle-phase	-	1	S 1000/265	
3-1E	3-phase 3 wires	Balanced	1	S 1000/315	
3N1E	3-phase 4 wires	Balanced	1	S 1000/316	
3-2E	3-phase 3 wires	Unbalanced	2	S 1000/266	Aron L1 - L3
3-3E	3-phase 3 wires	Unbalanced	3	S 1000/267	
3N3E	3-phase 4 wires	Unbalanced	3	S 1000/268	

1.3 Current delay time and average power Selectable delay time: 5, 8, 10, 15, 20, 30, 60minutes

The selected time is valid both for the current and the average power

1.4 Display contrast

4 values to adjust display contrast

1.5 Backlighted display

The 4 selectable levels (0 - 30 - 70 - 100%) show the display lighting percentage in standard conditions (keyboard idle time higher than 20 seconds). By pressing any key, display is fully lighted (100%)With loaded level = 100%, the lighting is steady and does not change by pressing a key

1.6 Rated current (external CT secondary winding) Rated value 1A (external CT secondary winding /1A) or 5A (external CT secondary winding /5A)

1.7 Run hour meter count start

Select the quantity which starts the run hour meter count: voltage or power Voltage: phase voltage > 10V Power: 3-phase active rated power Programmable value: 0...50%Pn Pn = 3-phase active rated power = 3-phase rated voltage Un x rated current In $x\sqrt{3}$ Un: 400V In: 1A or 5A

Pn = 400V x5A x $\sqrt{3}$ = 3464W or 400V x1A x $\sqrt{3}$ = 692,8W

Level 2 Password = 2001

- 2.1 External VT or CT ratio
- Ct = External primary/secondary CT ratio (ex. TA 800/5A Vt = 160)
- Ct = Selection in the field 1...9999 (max. primary current CT 50kA/5A 10kA/1A)
- Vt = External primary/secondary VT ratio (ex. TV 600/100V Vt = 6)
- Vt = Selection in the field 1,00...10,00 (max. primary voltage TV 1200V)
 For voltage direct connection (without external VT) load Vt =1,00
 By modifying the Ct and/or Vt ratios, the kWh meters are automatically
 reset

Level 3 Password = 3002

3.0 Communication protocols (See point 3 page 19)

Phase sequence diagnostic

In the software of the device we have added a specific functionality to detect and correct many problems concerning voltage and / or current connection.

This function can be activated through password and allows to display and modify the connection sequence provided that the following conditions are respected:

1) The neutral wire (in a 4-wire network) is connected to the right terminal (normally number 1)

- 2) No crossings between cables connected to CT's (e.g. avoid that on phase 1 of the meter-termi
 - nals 1 and 3 are connected some way both to CT1 and CT2).
- The power factor is between 1 and 0,5 Inductive load for each phase. See www.imeitaly.com "TECHNICAL SUPPORT".

 Note
 The customized page will become the standard display when the meter is turned on

 Note
 If you don't want to display the customized page, you can directly go to point 1.2

 Connection
 by pressing several times key

01/16 10783510 WEB E cod.MF9600.

📀 📰 🎯 🕗

Line 1 Table 1 Linty Voltege L1 Pro9rAD ¹² L in Iv Voltage L1-L2 Program ¹ L in L i **Current L1** ProgrAD **Neutral Current** s L in L A ProgrAD **3-phase Active Power** » Linl w ProgrAD **3-phase Reactive Power** ProgrAD s L in I va **3-phase Apparent Power** ProgrAD **Active Power L1** ¹ L in L w ProgrAD **Reactive Power L1** ProgrAD **Apparent Power L1** 1 Lin Iva ProgrAA **3-phase Power Factor** s L in l PE Pro9rAN

01/16 10783510 WEB E cod.MF9600.

Nemo 96 HD

Line 3	Table 3
1 L inB x Program	Voltage L3
1 L in 3 w Program	Voltage L3-L1
³ L in 3 va Pro9r80	Current L3
⁸ L in B van Pro9n80	3-phase Active Power
^a Lin3 w Pro9rRD	3-phase Reactive Power
Σ	
L in B va ProScBD	3-phase Apparent Power
Σ	
L in Bivan ProßerRD	Active Power L3
Σ	
L in 3 w Program	Reactive Power L3
⁸ Ling A Program	Apparent Power L3
³¹ L in 3 v Pro9r80	Active Power L1
³ Lin3v Pro9c80	Current L1

1.2 Connection

595 36.66 1-6

select the desired connection and scrupulously respect the linked wiring diagram. The selectable wiring diagrams are:

Symbol	Line	Load	n° external CT'S	Wiring	Connection
1N1E	Sigle-phase	-	1	S 1000/265	
3-1E	3-phase 3 wires	Balanced	1	S 1000/315	
3N1E	3-phase 4 wires	Balanced	1	S 1000/316	
3-2E	3-phase 3 wires	Unbalanced	2	S 1000/266	Aron L1 - L3
3-3E	3-phase 3 wires	Unbalanced	3	S 1000/267	
3N3E	3-phase 4 wires	Unbalanced	3	S 1000/268	

Display contrast 1.4

4 value display to adjust display contrast

selects the contrast level confirms ┛

1.5 **Display contrast**

The 4 selectable levels (0 – 30 – 70 – 100%) show the display lighting percentage

selects the lighting level confirms ┛

1.6 Rated current (external CT secondary winding) Rated value 1A (external CT with secondary /1A) or 5A (external CT with secondary /5A)

- selects 1A or 5A
- ┛ confirms

Current delay time and average power 1.3

Selectable delay time: 5, 8, 10, 15, 20, 30, 60minutes The selected time is valid both for the current and the average power

selects the contrast level

confirms

1.7 Run hour meter count start

Select the quantity which starts the run hour meter count: Voltage or Power.

Voltage count start **1.7**a

Voltage: count start with phase voltage > 10V

Power count start 1.7b

Power: count start with progragrammable 3-phase active power

0...50%Pn

increases/decreases the loaded value

confirms \leftarrow

Programmed data confirmation

2.1 External CT ratio

Ct = External primary/secondary (ex. CT 800/5A Ct = 160) Selection in the field 1...9999 (max. primary current 50kA/5A – 10kA/1A)

moves the cursor
increases/decreases the loaded value confirms

External VT ratio

- Vt = External primary/secondary VT ratio (ex. VT 600/100V Vt = 6)
 Selection in the field 1,00...10,00 (max. primary voltage VT 1200V)
 For voltage direct connection (without external VT) load Vt =1,00
 By modifying the Ct and/or Vt ratios, the KWH meters are automatically
 reset.
- moves the cursor
- ▲ ▼ increases/decreases the loaded value
- ← confirms

Display

Display is divided into four menus, accessible with their relevant function keys. Acting on the function keys it is possible to scroll the different available measurements:

Reset

Simultaneously acting on the function keys, it is possible to reset the display pages:

3N3E - 3N1E

U		1	
1 XXXX v 2 XXXX v 3 XXXX v XXXXXXX Wh	Phase voltage L1-N Phase voltage L2-N Phase voltage L3-N Active Energy	1 XXXX A 2 XXXX A 3 XXXXXXXX A XXXXXXXXXX KVIN	Phase current L1 Phase current L2 Phase current L3 Active Energy
12 XXXX v 23 XXXX v 31 XXXXX v XXXXXXX beach	Interlinked voltage L1-L2 Interlinked voltage L2-L3 Interlinked voltage L3-L1 Reactive Energy	1 XXXX A P XXXXX A 3 XXXXXX A XXXXXXXX turb	Phase average current L1 Phase average current L2 Phase average current L3 Reactive Energy
1 XXXX v 2 XXXX v 3 XXXX v 1 in	Phase voltage L1-N Phase voltage L2-N Phase voltage L3-N Win. Value	1 2 3 3 3 3 3 3 3 3 3 3	Phase average current peak L1 Phase average current peak L2 Phase average current peak L3 Active Energy
1 XXXX v 2 XXXX v 3 XXXX v RR5	Reset Phase voltage L1-N Phase voltage L2-N Phase voltage L3-N W Max. Value	Σ XXXXX A Σ XXXXXX A XXXXXXXX booth	Neutral current Current sum <u>I1+I2+I3</u> 3 Reactive Energy
1 XXXX % 2 XXXX v THD XXXXXXXX Wh	Reset Harmonic distortion Phase voltage Active Energy	1 XXXX % 2 XXXXX A ^{THD} XXXXXXXXX Wh	Harmonic distortion Phase current Active Energy

📀 📰 🌀 🕗

3N3E - 3N1E

Nemo 96 HD

Negative reactive Energy

XXXXXXXX kvarh

3-3E 3-2E 3-1E

U		I. I.	
12 23 XXXXX V 31 XXXXXXX V XXXXXXXX Isarb	Interlinked voltage L1-L2 Interlinked voltage L2-L3 Interlinked voltage L3-L1 Reactive Energy	1 XXXX A Phase current L1 2 XXXX A Phase current L2 3 XXXX A Phase current L3 XXXXXXXX IV/h A Active Energy	
 XXXX v XXXX v XXXX v XXXX v XXXX v In 	Interlinked voltage L1-L2 Interlinked voltage L2-L3 Interlinked voltage L3-L1 Win. Value	1 XXXXX A Phase average current 2 XXXXX A Phase average current 3 XXXXXX A Phase average current XXXXXXXX kvath Reactive Energy	L1 L2 L3
 XXXX v XXXX v XXXX v XXXX v INRS 	Reset Interlinked voltage L1-L2 Interlinked voltage L2-L3 Interlinked voltage L3-L1 W E-T Max. Value U E-T	1 XXXX A 2 XXXX A 3 XXXX A 3 XXXXXXXX A XXXXXXXXX Wh Active Energy	peak L1 U E-T peak L2 + peak L3 Reset
12 XXXX % 23 XXXX 31 XXXX v THD XXXXXXX w	Interlinked voltage harmonic distortion	 XXXX Phase current harmonic distortion XXXXXXXX Active Energy 	

3-3E 3-2E 3-1E

Nemo 96 HD

1N1E

1N1E

Nemo 96 HD

Auxiliary Supply

Terminals 20 and 21

Auxiliary supply direct or alternating current electrical supply which is necessary for proper working of the device.

Please verify that the available supply voltage meets the one shown on the data label of the meter (voltage value and any frequency).

Where a double voltage is shown (for instance 80...265Vac / 110...300Vdc) the meter can be fed with alternating voltage 80...265Vac or direct voltage 110...300Vdc.

In case of direct voltage supply please respect the shown polarities 20+ and 21-.

F : 1A gG

Optional Modules

In the meter up to four optional modules can be connected.

Communication modules are as an alternative to them (they cannot coexist).

For the options pulse outputs, analog output and alarms, it is possible to connect one or two modules. In the table are listed module composition constrictions: max. number of modules and connection position. (see table)

Code	Description	N.	Position				Firmware ²	Technical
		Max.	Α	B	С	D	Filliwale	Note
IF96001	RS485 Communication	1	•				All	NT675
IF96002	RS232 Communication	1	•				All	NT676
IF96003	2 energy pulse outputs	2	•	•	•	•	All	NT677
IF96004	2 analogue outputs 0/420mA	2			•	•	1.08	NT678
IF96005	2 alarms	2	•	•	•	•	All	NT679
IF96006	Neutral current	1			•		1.08	NT683
IF96007A	PROFIBUS Communication	1	•				3.12	NT682
IF96009	LONWORKS Communication	1	•				2.00	NT684
IF96010	I/O 2 Inputs SPST - 2 Outputs SPST	2			•	•	2.06	NT702
IF96011	I/O 2 Inputs 12-24Vcc - 2 Outputs SPST	2			•	•	2.06	NT703
IF96012	RS485 - Energy value storage	1	•				2.06	NT704
IF96013	MBUS Outputs	1	•				2.06	NT707
IF96014	BACNET Outputs	1	•				2.08	NT743
IF96015	ETHERNET Outputs	1	•				2.00	NT785
IF96016	Measure Temperature	1				•	2.30	NT810

By using an IF96001 (RS485) or IF96002 (RS232) communication module it is possible to update

the firmware version (starting from 2.00 version) directly on field, with the help of a PC and the download software.

ATTENTION!

Module connection must be carried out with non-fed meter

Connection of Optional Modules

Turn off the meter Connect th optional module Feed the meter and wait some seconds for the module recognition To program the parameters of each module, please refer to the relevant manual

3.0 Password 3002

Communication Protocole.

For the communication modules (see table) it is necessary to set the Communication Protocol.

Load password 3002 and select the communiction protocol (See table).

*For details, please see the communication protocol.

Factory setting

Password 1000

Customized page ¹Lin1v voltage L1 ²Lin2v voltage L2 ³Lin3v voltage L3 Connection: 3n3E 4-wires 3-system line Average time: 5m 5 minutes Contrast: 03 level 3 Backlight: 30% Rated current: 5A Run hour meter: U Voltage start

Password 2001

CT ratio: 0001 direct connection **VT ratio:** 01,00 direct connection

Password 3002

20

Protocol: MdbS Modbus RTU

ICS Schneider Messtechnik GmbH Briesestraße 59 D-16562 Hohen Neuendorf / OT Bergfelde

Tel.: 03303 / 504066 Fax: 03303 / 504068 info@ics-schneider.de www.ics-schneider.de 01/16 10783510 WEB E cod.MF9600.