

CE

Betriebsanleitung

DE

Überlastsicherung - Multifunktionales Sicherheitsschaltgerät für nicht in der Standsicherheit gefährdete Krane, Typ ELMS1

ملہ بعاد آن پیغہ UU 0 0 0 T e n n h A01-A04:4-20mA ELMS1X000005 AO5-AO8:0-10V WIKA GNDENDENDEND 6 6 6 6666 0 6 6

Beispiel

ICS Schneider Messtechnik GmbH Briesestraße 59 D-16562 Hohen Neuendorf / OT Bergfelde Tel.: 03303 / 50 40 66 Fax.: 03303 / 50 40 68 info@ics-schneider.de www.ics-schneider.de © tecsis GmbH 2020. Alle Rechte vorbehalten.

Die Veröffentlichung, Vervielfältigung und/oder Bearbeitung dieses Dokuments sowie die Verwendung und Wiedergabe der Inhalte dessen ist untersagt, sofern keine ausdrückliche Genehmigung hierfür erteilt wurde. Im Falle einer Zuwiderhandlung werden Schadenersatzforderungen geltend gemacht. Alle Rechte im Hinblick auf Patentierung, Gebrauchsmustereintragung sowie Geschmacksmustereintragung vorbehalten.

Alle Markennamen sowie eingetragene Marken sind der Besitz der jeweiligen Eigentümer. Sofern als nicht solches gekennzeichnet, impliziert die Verwendung von Namen, Handelsmarken, Kennungen, etc. in diesem Dokument nicht, dass diese Namen als verfügbar erachtet werden können und daher von jedem im Sinne des Markennamens sowie des Markennamenschutzgesetzes verwendet werden dürfen.

Inhalt

1	Allgemeines	6
1.1 1.2	Beschreibung ELMS1 Überlastsicherung Zertifizierung	6 7
1.3 1.4	Beschreibung ELMS1 Sicherheitssteuerung Merkmale ELMS1 Sicherheitssteuerung (Zentralmodul)	7 8
2	Grundlegende Sicherheitshinweise	9
2.1	Sicherheitshinweise und Symbole	11
2.2	Bestimmungsgemäße Verwendung	12
2.3	Vorhersehbare Fehlanwendung	12 17
2.4	Organisatorische Maßnahmen	14
2.6	Qualifikation	14
2.7	Haftungsausschluss	14
3	Lieferumfang	16
4	Einsatzgebiete	16
5	Aufbau und Funktion ELMS1 Sicherheitssteuerung	17
5.1	Beschreibung der Module	20
ELM	S1-ZMV	20
	IS1-ZMVK IS1-ZMV/A	22 22
ELM	IST-COV	23 24
ELM	S1-DPV	25
ELM	IS1-PNV	26
ELM	IS1-ECV	27
	IS-IOV IS-INV	28 29
ELM	IS-RMV	30
6	Kundenspezifische Anwenderapplikation	31
6.1	Sicherheitsfunktion	31
6.2	Betriebszustände	32
Ope	ration	33 22
Svst	emfehler	33 33
6.3	Kundenspezifische Schaltschwellen	33
Unte	rlast	34
Übeı	rschreiten einer Einzellast	34

E – Stop Überschro Seitenlas Seitendiff Laststund 6.4 7 Mon	Funktion eiten einer Gesamtlast ten erenz lenzähler Betriebsarten tage	34 35 35 35 35 36 37
7.1	Abmessungen der Module	37
7.2	Montage der Module	38
Einbau		38
Ausbau		39
7.3	Verdrahtung	40
7.4	Spannungsversorgung	42
8 Inbe	triebnahme	45
8.1	Prüfung vor erster Inbetriebnahme	46
8.2	Installation Software	47
8.3	Passwort	48
Level 2		48
Level 1		48
Passwort	abfrage	49
Passwort	ändern	49
8.4	Aktuelles Projekt laden	50
8.5	Aktuelles Projekt speichern	50
8.6	Automatisches Justieren	51
Deferenze	wicht (Nullpunkt)	53
	Manuallas Justiaran	55
8.8	Parametrierung	50
0.0 Paramete	r arametrierung	58
Parametrierung Kraftaufnehmer 61		
Einstellun	g der Schaltschwellen	63
Auswahl	Betriebsart	65
Abschaltv	/erzögerungen	67
Traglastü	berwachung	69
Onlinewe	rte	69
Analogau	sgänge (nicht sicherheitsgerichtet)	71
8.9	Übertragung der Applikationsdaten	72
8.10	Validierung der ELMS1 Steuerung	73
8.11	Parametrierung Prüfen	74
8.12	Systemvalidierung und Dokumentation	75

9	Wiederkehrende Prüfung	.76
10	Instandsetzung	77
10.1	Störung	77
10.2	Rack Diagnose	.78
10.3	Ersatzteile	82
11	Transport	83
12	Lagerung	.83
13	Entsorgung	.84
14	Sicherheitskenndaten	.85
14.1 14.2 14 3	Systemgrenzen Sicherheitsparameter ELMS1 Sicherheitssteuerung Sicherheitsparameter Kraftaufnehmer	85 86 86
14.4 15	Sicherheitsparameter ELMS1 Überlastsicherung	.88 . 89
16	Konformitätserklärung	.96
17	Systemübersicht – Blockschaltbild	98

1 Allgemeines

Diese Betriebsanleitung wurde für Elektrofachkräfte geschrieben. Lesen Sie die Betriebsanleitung, um die ELMS1 Überlastsicherung sicher zu montieren und zu betreiben.

Diese Betriebsanleitung erläutert die Funktionsweise und den Betrieb der ELMS1 Überlastsicherung.

Sie beschreibt die bestimmungsgemäße Verwendung und gibt dem Anwender und Betreiber wichtige Hinweise

zur Installation, Einrichtung, Wartung und Instandsetzung sowie zur Überprüfung des Systems.

Diese Betriebsanleitung ist gültig für die ELMS1 Überlastsicherung.

Sie gilt, bis eine neue Ausgabe erscheint.

1.1 Beschreibung ELMS1 Überlastsicherung

Überlasten sicher verhindern, um Menschen und Material zu schützen: Die Maschinenrichtlinie 2006/42/EG macht hier klare Vorgaben, welche Anforderungen die Steuerungstechnik für die Überlastsicherung in einem Kran zu erfüllen hat.

tecsis bietet die erste in Deutschland zertifizierte Systemlösung für die Überlastsicherung in Krananlagen an.

Die ELMS1 Überlastsicherung kann in bestehende Systeme für nicht in der Standsicherheit gefährdete Krane eingebunden werden. Durch den Einsatz der ELMS1 Überlastsicherung können erhebliche Kosten für das Engineering und die Sicherheitsbetrachtung der Überlasterfassung eingespart werden.

Daher ist eine weitere Softwareentwicklung oder gesonderte Hardware Auslegung der Messkette nicht notwendig.

Sie erhalten ein komplettes System aus einer Hand und somit entfallen jegliche Kompatibilitätsprobleme.

Die ELMS1 Überlastsicherung schützt das Bedienpersonal und die Anlage.

Die ELMS1 Überlastsicherung (Gesamtsystem) besteht aus folgenden Komponenten:

- ELMS1 Sicherheitssteuerung
- ELMS1 Applikation
- ELMS1 PC-Software zur sicheren Parametrierung, Inbetriebnahme und Wartung
- Bis zu vier redundante Kraftaufnehmer der Firma tecsis GmbH

1.2 Zertifizierung

Die ELMS1 Sicherheitssteuerung wurde von der DGUV Prüfund Zertifizierungsstelle "Elektrotechnik" geprüft und zertifiziert (ET 17060).

Ebenso wurde die ELMS1 Überlastsicherung (Gesamtsystem) bestehend aus der ELMS1 Sicherheitssteuerung, Software und Kraftsensorik von der Prüf- und Zertifizierungsstelle "Hebezeuge, Sicherheitskomponenten und Maschinen" geprüft und zertifiziert (HSM 19012).

Die ELMS1 Überlastsicherung (Gesamtsystem) erfüllt die Anforderungen von Kat. 3 und PL d gemäß DIN EN ISO 13849-1:2016-06.

1.3 Beschreibung ELMS1 Sicherheitssteuerung

Die ELMS1 Sicherheitssteuerung ist ein multifunktionales, modular erweiterbares, kundenspezifisch konfigurierbares Sicherheitsschaltgerät für nicht in der Standsicherheit gefährdete Krane.

Die sicherheitsgerichteten Steuerungsfunktionen des Systems befinden sich im Zentralmodul der ELMS1 Sicherheitssteuerung. Das Zentralmodul wertet die Eingangssignale der Kraftaufnehmer aus und stellt die Daten an den Ausgängen bereit. Die Aufgabe dabei ist die sichere Abschaltung bei Überschreiten der maximal zulässigen Nennlast der Krananlage.

Je nach Kundenanforderung kann das Zentralmodul durch weitere digitale I/O-Module erweitert werden. Die Module

werden über einen sicheren Normschienenbus miteinander verbunden. Die Elektronik verfügt über eine Vielzahl von sicheren digitalen und analogen Eingängen, sichere Halbleiter- und Kontaktausgänge und nicht sichere Analogausgänge. Der Status der Ein- und Ausgänge, Betriebsspannung und anderen Diagnoseaufgaben wird über eine LED-Matrix angezeigt.

1.4 Merkmale ELMS1 Sicherheitssteuerung (Zentralmodul)

Je nach Ausführung:

- 8 x sichere Analog-Eingänge 4 20 mA (Artikelnummer: ELMS1X000001 – Typ: ZM10)
- Zusätzlich dazu 4 x sichere Relais-Ausgänge (Artikelnummer: ELMS1X000002 – Typ: ZMVK)

oder:

- 6 x sichere Analog-Eingänge 4 20 mA
- 2 x Analog-Ausgänge 0 10 V (Artikelnummer: ELMS1X000003 – Typ: ZMV)
- Zusätzlich dazu 4 x sichere Relais-Ausgänge (Artikelnummer: ELMS1X000004 – Typ: ZMVK)

oder:

- 8 x sichere Analog-Eingänge 4 20 mA
- 4 x Analog-Ausgänge 4 20 mA / 0 10 V (Artikelnummer: ELMS1X000005 – Typ: ZMVA)

und je:

- 8 x sichere Digital-Eingänge
- 2 x sichere Relais-Ausgänge
- 6 x sichere Halbleiter-Ausgänge (positiv schaltend)
- 4 x sichere Digital-Ein/Ausgänge
- 1 x USB Schnittstelle für Daten-Transfer
- Erweiterungsstecker für Zusatzmodule
- Für den Einbau im Schaltschrank mit > IP 54 Sicherheitsrelevante Funktionen nach DIN EN 13849-1:2016-06 (Kat. 3, PLe)

 optional mit ProfiBus, CANopen, ProfiNet, EtherCAT Alle Halbleiterausgänge sind kurzschluss- und überlagtgieber!

überlastsicher!

2 Grundlegende Sicherheitshinweise

Die hier beschriebene ELMS1 Sicherheitssteuerung ist ein Sicherheitsbauteil gemäß Anhang V der Maschinenrichtlinie 2006/42/EG.

Sie wurde entwickelt, um als Teil eines Gesamtsystems Sicherheitsfunktionen zu übernehmen.

Die ELMS1 Überlastsicherung (Gesamtsystem) wird durch Sensoren, Auswerte- und Meldeeinheiten sowie Konzepte für sichere Abschaltungen gebildet.

- Es liegt im Verantwortungsbereich des Herstellers einer Anlage oder Maschine, die korrekte Gesamtfunktion sicherzustellen.
- Vor dem Einsatz der Überlastsicherung ELMS1 muss eine Risikobeurteilung für die Maschine "Kran" durch den Endanwender erfolgen.
- Für die Planung und Gestaltung der Sicherheit der Applikation ist der Anwender verantwortlich.
- Definieren Sie für die Gesamtheit der Maschine und für den gesamten Sicherheitslebenszyklus die Sicherheitsanforderungen und wie sie technisch und organisatorisch realisiert werden sollen.
- Der Hersteller der Anlage/Maschine ist verpflichtet, die Wirksamkeit des implementierten Sicherheitskonzepts innerhalb des Gesamtsystems zu prüfen und zu dokumentieren.
- Dieser Nachweis ist nach jeglicher Modifikation am Sicherheitskonzept bzw. Sicherheitsparametern erneut zu erbringen.

Unabhängig von den Angaben in dieser Betriebsanleitung gelten grundsätzlich die Normen und Vorschriften in ihrer aktuellsten, gültigen Version. Die **VDE 0660-514** bzw. die örtlichen nationalen Vorschriften, insbesondere hinsichtlich der Schutzmaßnahmen sind zu beachten.

Des Weiteren gilt:

- Bei Not-Halt Anwendungen muss entweder die integrierte Funktion f
 ür Wiederanlaufsperre verwendet werden oder der automatische Wiederanlauf der Maschine durch eine
 übergeordnete Steuerung verhindert werden.
- Halten Sie beim Transport, Lagerung und im Betrieb die Bedingungen nach **EN 60068-2-1, 2-2** ein!
- Montieren Sie das Gerät in einem Schaltschrank mit einer Mindestschutzart von IP 54! Staub und Feuchtigkeit können ansonst zu Beeinträchtigungen der Funktionen führen. Der Einbau in einem Schaltschrank ist zwingend.
- Sorgen Sie für ausreichende Schutzbeschaltung an Ausgangskontakten bei kapazitiven und induktiven Lasten!
- Das Gerät ist einzubauen unter Berücksichtigung der nach **DIN EN 50274, VDE 0660-514** geforderten Abstände.
- Während des Betriebes stehen Schaltgeräte unter gefährlicher Spannung. Schutzabdeckungen dürfen während des Betriebes nicht entfernt werden.
- Wechseln Sie das Gerät nach dem ersten Fehlerfall unbedingt aus!
- Entsorgen Sie das Gerät nach Ablauf seiner Lebensdauer sachgerecht!
- Zur Vermeidung von EMV-Störgrößen müssen die physikalischen Umgebungs- und Betriebsbedingungen am Einbauort des Produkts der relevanten Norm entsprechen (vgl. DIN EN 60204-1, Kap. 4.4.2).

2.1 Sicherheitshinweise und Symbole

Beachten Sie die Sicherheitshinweise in dieser Betriebsanleitung. Werden die Sicherheitsvorschriften nicht beachtet, können Tod, schwere Verletzungen oder hoher Sachschaden die Folge sein.

Die Sicherheitshinweise sind in drei Stufen unterteilt.

Sicherheitshinweise

GEFAHR	Nichtbeachtung führt zu Tod oder schwerer Verletzung.
	Nichtbeachtung kann zu Tod oder schweren Verletzungen führen.
	Nichtbeachtung kann zu Verletzungen führen.
	Nichtbeachtung kann zu Materialschäden führen und die Funktion des Produkts beinträchtigen.
HINWEIS	Der Hinweis stellt nützliche Zusatzinfor- mationen bereit.

2.2 Bestimmungsgemäße Verwendung

Die ELMS1 Überlastsicherung (Gesamtsystem) ist eine indirekte wirkende Überlastsicherung gemäß DIN EN 14492-2.

Das System ist geeignet für die sichere Abschaltung bei Überlast an Hebezeugen und Kranen, die nicht in der Standsicherheit gefährdet sind – nachfolgend Krane genannt. Das Gesamtsystem erfüllt die Anforderungen **von Kat. 3 und PL d gemäß DIN EN ISO 13849-1:2016-06.**

Die in dieser Betriebsanleitung genannten Einsatzgrenzen und die durch die Produkteigenschaften vorgegebenen Grenzwerte (z. B. PL d, Messtoleranzen der Kraftaufnehmer) sind einzuhalten.

Die in dieser Betriebsanleitung gemachten Vorgaben sind einzuhalten, insbesondere in Hinsicht auf die Montage, Inbetriebnahme und Instandsetzung.

Die ELMS1 Überlastsicherung muss die Steuerungsfunktionen des Kranes überlagern um Bewegungen zu verhindern, die zur Überlastung des Krans führen und um gefahrbringende Bewegungen der Last zu verhindern.

2.3 Vorhersehbare Fehlanwendung

Eine Fehlanwendung des Gesamtsystems kann zu gefährlichen Situationen und Ver- letzungen führen. Für sämtliche Änderun- gen am System ist Rücksprache mit dem Hersteller zu nehmen.
Ein von dieser Betriebsanleitung abwei- chender Einsatz sowie der Einsatz außer- halb der bestimmungsgemäßen Verwen- dung oder des Anwendungsbereichs ist nicht zulässig.

Nachfolgend werden beispielhaft mögliche Fehlanwendungen aufgeführt die zur Gefährdung der Sicherheit führen können.

- Verwendung anderer, nicht in dieser Betriebsanleitung enthaltene Kraftaufnehmer (siehe Kap. 1.1 und Lieferumfang: Redundante Kraftaufnehmer der tecsis GmbH zum Aufnehmen der Last. In den Kraftaufnehmern ist die Sensorik sicherheitsgerichtet integriert.)
- Fehlerhafter Anschluss der Kraftaufnehmer
- Betrieb außerhalb der technischen Spezifikation
- Fehlerhafte Parametrierung des Überlastsystems
- Wenden, Kippen, Reißen oder Ziehen von Lasten, die zu dauerhaften Schäden der Überlastsicherung führen können
- Überbeanspruchung bei Magnetbetrieb, wenn die Magnetkraft größer ist als die Nenntragkraft

GEFAHR	Ein Zuladen bei schwebenden Lasten ist verboten, da hier ein Überschreiten der maximal zulässigen Nennlast möglich ist.
WARNUNG	Die Auslegung der Kraftaufnehmer ist be- stimmungsgemäß nur für den Normalbe- trieb ausgelegt. Eine nicht bestimmungs- gemäße Anwendung ist z.B. das Wenden oder kippen von Lasten, die zu Ermü- dungsbrüchen führen kann.
- HINWEIS	Die ELMS1 Sicherheitssteuerung ohne Kraftsensorik und ohne Anwenderpro- gramm ist bis PLe zertifiziert. Anwendun- gen bis PLe sind möglich. Diese Anwen- dungen müssen aber gesondert zertifiziert werden.

2.4 Restrisiken

Trotz Einhaltung und Umsetzung aller Vorgaben sowie Befolgung der Sicherheitshinweise für ELMS1, können sich bedingt durch eine fehlerhafte Anwendung Restrisiken ergeben, die z.B. zu einem Lastabsturz führen können.

Die Restrisiken müssen vom Endanwender im Rahmen der Risikobeurteilung bzw. Gefährdungsbeurteilung berücksichtigt und ggf. beseitigt werden, z.B. durch organisatorische Maßnahmen. Dazu gehört eine sicherheitsgerechte Organisation der Arbeitsabläufe.

Auf Basis der Gefährdungsbeurteilung (Betreiber) bzw. Risikobeurteilung (Hersteller) können ergänzende Schutzmaßnahmen, z. B. eine Anlaufsperre, erforderlich sein. Gemäß EN ISO 13849 darf ein Wiederanlauf nur dann automatisch erfolgen, wenn keine Gefährdungssituation bestehen kann.

2.5 Organisatorische Maßnahmen

Die Betriebsanleitung ist Teil des Produkts und muss jederzeit griffbereit zur Verfügung stehen. Geben Sie die Betriebsanleitung bei einer Veräußerung des Produkts weiter.

2.6 Qualifikation

Die ELMS1 Überlastsicherung darf nur von Elektrofachkräften oder elektrotechnisch unterwiesenen Personen installiert und in Betrieb genommen werden, die mit dieser Betriebsanleitung und den geltenden Vorschriften über Arbeitssicherheit und Unfallverhütung vertraut sind.

2.7 Haftungsausschluss

Die tecsis GmbH ist nicht in der Lage, alle Eigenschaften eines Gesamtsystems, das nicht durch die tecsis GmbH konzipiert wurde, zu garantieren. Die tecsis GmbH übernimmt auch keine Haftung für Empfehlungen, die durch die nachfolgende Beschreibung gegeben bzw. impliziert werden.

Auf Grund der nachfolgenden Beschreibung können keine neuen, über die allgemeinen Lieferbedingungen der tecsis GmbH hinausgehenden Garantie-, Gewährleistungsoder Haftungsansprüche abgeleitet werden.

Bei Nichteinhaltung der Sicherheitsbestimmungen oder bei unsachgemäßer Anwendung übernimmt die Firma tecsis GmbH keinerlei Haftung für daraus entstehende Schäden an Personen oder Sachgegenständen.

3 Lieferumfang

- ELMS Sicherheitssteuerung (kundenspezifisch programmierte Steuerung) als Verarbeitungseinheit der ELMS1 Überlastsicherung mit integrierter Software zur Inbetriebnahme vor Ort.
- Betriebsanleitung für ELMS1 Überlastsicherung
- Redundante Kraftaufnehmer der tecsis GmbH (F23S1, F33S1, F53S1 oder F73S1) zum Aufnehmen der Last. In den Kraftaufnehmern ist die Sensorik sicherheitsgerichtet integriert.
- Betriebsanleitung Kraftaufnehmer
- Kundenspezifischer Verdrahtungsplan
- Kundenspezifische Parameterliste
- Kundenspezifische Feldbuskonfiguration (optional)

4 Einsatzgebiete

Die ELMS1 Überlastsicherung kann für die folgenden nicht in der Standsicherheit gefährdeten Krantypen eingesetzt werden:

- Brückenkrane,
- STS Krane (Ship to Shore),
- RTG Krane (Rubber Tyred Gantry),
- RMG Krane (Rail Mounted Gantry).

5 Aufbau und Funktion ELMS1 Sicherheitssteuerung

Die Steuerung der ELMS1 Überlastsicherung besteht aus einem Zentralmodul, das je nach Kundenanforderung um weitere Module mit zusätzlichen Ein- und Ausgängen erweitert wird.

Spannungsversorgung

Die Spannungsversorgung für die Module erfolgt über die Klemmen A1 und A2 am Zentralmodul. Die Betriebsspannung wird intern überwacht. Bei Überspannung ≥ 30V bzw. bei Leitungsbruch an den Klemmen der Spannungsversorgung wird die Betriebsspannung intern abgeschaltet.

Kurzschlusssicherung

Eine elektronische Kurzschlusssicherung ist integriert. Die Stromaufnahme an der Spannungsversorgung und die Betriebstemperatur werden ebenfalls überwacht.

Halbleiterausgänge

Alle Halbleiterausgänge sind überlast- und kurzschlusssicher.

LED-Matrix

Die LED-Matrix auf der Oberseite des Zentralmoduls zeigt den Status der Kanäle an: grün – Kanal aktiv.

Eingänge: I1 – I16

Ausgänge: O1 – O6

Schaltzustand: IO1 - IO4

Überwachung Drehzahl: 1992 Drehzahl grün: V_{ist} < V_{max}

Stillstand: 102

Schaltzustand: K1 – K2

Applikation

In jeder Applikation befindet sich das Zentralmodul links. Die Erweiterungsmodule werden rechts davon angereiht. Die Module werden über einen sicheren Normschienenbus miteinander verbunden.

Es gibt zwei Varianten des Zentralmoduls:

- ELMS-ZMV
 - o Artikelnummer: ELMS1X000001
 - o Artikelnummer: ELMS1X000003
- ELMS-ZMVK
 - o Artikelnummer: ELMS1X000002
 - o Artikelnummer: ELMS1X000004
- ELMS-ZMVA
 - o Artikelnummer: ELMS1X000005

Erweiterungsmodule:

- ELMS-COV
- ELMS-DPD
- ELMS-PNV
- ELMS-ECV
- ELMS-IOV
- ELMS-INV
- ELMS-RMV

5.1 Beschreibung der Module

ELMS1-ZMV

Das ELMS-ZMV-Modul ist das Zentralmodul der Applikation in seiner Grundausstattung.

Es gibt zwei Varianten:

- Artikelnummer: ELMS1X000001
- Artikelnummer: ELMS1X000003

Fig. 3 ELMS1-ZMV mit Anschluss-Schema

ELMS1X	Eingänge und ihre Funktionen
000001 1 – 8	Sicherheitsfunktion: 8 analoge Eingänge für 4 zweikanalige Kraftaufnehmer zur sicheren Abschaltung bei Über- last.

ELMS1X	Eingänge und ihre Funktionen
000003 1 – 6 A1 –A2	Sicherheitsfunktion: 6 analoge Eingänge für 3 zweikanalige Kraftaufnehmer zur sicheren Abschaltung bei Über- last. 2 analoge Ausgänge.
I9 – I11	Betriebsarten – 3 digitale Eingänge zur Ansteue- rung von bis zu 8 Betriebsarten.
l12 – l16	5 digitale Eingänge für kundenspezifische Applikatio- nen.
USB	USB Schnittstelle zur Übertagung der Applikations- daten.

	Ein- Ausgänge und ihre Funktionen
101 – 104	4 sichere digitale Eingänge oder 4 sichere Ausgänge für kundenspezifische Applikati- onen.

	Ausgänge und ihre Funktionen
01 – 06	sichere positivschaltende Ausgänge, überlast- und kurzschlusssicher (O1 und O2 stromüberwacht).
13 - 14	sichere Kontaktausgänge K1 zur sicheren Abschaltung.
23 - 24	sichere Kontaktausgänge K2 zur sicheren Abschaltung.

ELMS1-ZMVK

Das ELMS-ZMVK-Modul ist ein erweitertes Zentralmodul. Es ist baugleich mit dem ZMV-Modul und hat zusätzlich eine Ausgangserweiterung mit 4 sicheren Relais.

Es gibt zwei Varianten:

- Artikelnummer: ELMS1X000002
- Artikelnummer: ELMS1X000004

Fig. 4 ELMS1-ZMVK mit Anschluss-Schema Ausgangserweiterung

	Kontaktausgänge und ihre Funktionen
K3 – K6	4 Kontaktausgänge mit je 2 sicheren Schließer- Kontakten (33/34 bis 103/104).

ELMS1-ZMVA

Das ELMS1-ZMVA-Modul ist ein erweitertes Zentralmodul. Es ist baugleich mit dem ZMV-Modul, jedoch hat es sowohl 8 sichere Analogeingänge als auch 4 analoge Ausgänge.

Artikelnummer: ELMS1X000005

ELMS1-ZMVA mit Anschluss-Schema Ausgangserweiterung

ELMS1-COV

Das ELMS-COV-Modul ist ein Eingangs- Ausgangsmodul mit einer Feldbusschnittstelle Typ **CANopen**. Zur Kommunikation mit dem Feldbus Master sind 4 Byte Eingangsdaten und 40 Byte Ausgangsdaten verfügbar.

Fig. 6 ELMS1-COV mit Anschluss-Schema

	Eingänge und ihre Funktionen
I1 – I8	8 digitale Eingänge für kundenspezifische Applikatio- nen. (Zurzeit nicht verwendet!)

ELMS1-DPV

Das ELMS-DPV-Modul ist ein Eingangs- Ausgangsmodul mit einer Feldbusschnittstelle Typ **PROFIBUS DP**.

Zur Kommunikation mit dem Feldbus Master sind 4 Byte Eingangsdaten und 40 Byte Ausgangsdaten verfügbar.

Fig. 7 ELMS1-DPV mit Anschluss-Schema

	Eingänge und ihre Funktionen	
11 – 18	8 digitale Eingänge für kundenspezifische Applikatio- nen. (Zurzeit nicht verwendet!)	

ELMS1-PNV

Das ELMS-PNV-Modul ist Eingangs- Ausgangsmodul mit einer Feldbusschnittstelle Typ **ProfiNet**. Zur Kommunikation mit dem Feldbus Master sind 4 Byte Eingangsdaten und 32 Byte Ausgangsdaten verfügbar.

Fig. 8 ELMS1-PNV mit Anschluss-Schema

	Eingänge und ihre Funktionen		
11 – 18	8 digitale Eingänge für kundenspezifische Applikatio- nen. (Zurzeit nicht verwendet!)		

ELMS1-ECV

Das ELMS1-ECV-Modul ist Eingangs- Ausgangsmodul mit einer Feldbusschnittstelle Typ **EtherCAT**. Zur Kommunikation mit dem Feldbus Master sind 4 Byte Eingangsdaten und 32 Byte Ausgangsdaten verfügbar.

Fig. 9 ELMS1-ECV mit Anschluss-Schema

	Eingänge und ihre Funktionen	
l1 – l8	8 digitale Eingänge für kundenspezifische Applikatio- nen. (Zurzeit nicht verwendet!)	

ELMS-IOV

Das ELMS-IOV-Modul ist ein Eingangs- Ausgangsmodul mit Halbleiterausgängen.

Fig. 10 ELMS-IOV mit Anschluss-Schema

	Eingänge und ihre Funktionen		
11 – 18	8 digitale Eingänge für kundenspezifische Applikationen.		
P24V	Eingang zur Versorgung der Halbleiterausgänge mit 24VDC. Die Spannung an der P-Klemme wird im Modul analog der Betriebsspannung überwacht.		

	Ausgänge und ihre Funktionen	
O1 – O6	7 digitale Ausgänge für kundenspezifische Applikationen.	

ELMS-INV

Das ELMS-INV-Modul ist ein Eingangs- Ausgangsmodul mit Halbleiterausgängen.

Fig. 11 ELMS-INV mit Anschluss-Schema

	Eingänge und ihre Funktionen	
11 – 112	12 digitale Eingänge für kundenspezifische Applikationen.	

	Ein- Ausgänge und ihre Funktionen	
101 –	4 digitale Ein- Ausgänge für kundenspezifische	
104	Applikationen.	

ELMS-RMV

Das ELMS-RMV-Modul ist ein Eingangs- Ausgangsmodul mit Kontaktausgängen.

Fig. 12 ELMS-RMV mit Anschluss-Schema

	Eingänge und ihre Funktionen	
11 – 18	8 digitale Eingänge für kundenspezifische Applikationen.	

	Ausgänge und ihre Funktionen		
13 - 14 23 - 24 33 - 34 43 - 44	2 Kontaktausgänge mit je 2 sicheren NO-Kontakten.		

6 Kundenspezifische Anwenderapplikation

Die Anwenderapplikation wird kundenspezifisch programmiert und im Zentralmodul hinterlegt.

Die Zuweisung aller Ein- und Ausgänge wird im beigefügten Verdrahtungsplan dokumentiert.

Die Prozesswerte können zusätzlich über ein Feldbusmodul ausgewertet werden.

Jede Manipulation an der Applikation kann zum Verlust der Sicherheitsfunktion führen. Eine Manipulation der Applikation ist verboten!

6.1 Sicherheitsfunktion

Zentrale Funktion ist die Sicherheitsfunktion: Abschaltung bei Überschreiten der maximal zulässigen Nennlast der Krananlage. Dieser Zustand wird im Folgenden als Überlast bezeichnet.

Der sichere Zustand ist der stromlose Zustand.

Bis zu vier zweikanalige Kraftaufnehmer werden ausgelesen. Jeder Kraftaufnehmer liefert zwei gegenläufige Signale im Bereich von 4 – 20 mA. Jeder Kraftaufnehmer wird separat auf übereinstimmende Werte der beiden Kanäle überprüft. Liefern beide Signale übereinstimmende Werte, wird jeweils ein Wert pro Kraftaufnehmer weiterverarbeitet.

Einzellast Überlast (Sicherheitsfunktion)

Die vier verbliebenen Signale werden einzeln auf Überlast geprüft. Schaltsignale werden zusammengeführt.

Gesamtlast Überlast (Sicherheitsfunktion)

Alle Signale werden bei Applikationen mit mehreren Kraftaufnehmern zu einer Gesamtlast summiert. Die Gesamtlast wird zweifach gegen die jeweiligen Schaltschwellen auf Überlast geprüft. Dabei können z. B. Beschleunigungsprozesse über zwei Schaltschwellen (Verzögerung und direkte Abschaltung) ausgefiltert werden:

Schaltschwelle 1 (Verzögerung): Das Überschreiten der Schaltschwelle 1 wird in einer definierten einstellbaren Schaltzeit toleriert. Wird die Schaltschwelle nach Ablauf der Zeit noch überschritten, erfolgt die Abschaltung.

Schaltschwelle 2 (Direkte Abschaltung): Bei Erreichen der Schaltschwelle 2 erfolgt die direkte Abschaltung.

Gemäß DIN EN 14492-2 Kap. 5.2.2.2 müssen die beiden eingestellten Schaltschwellen auf ≤ 125% der Tragfähigkeit eingestellt werden.

Abschaltung bei Überlast (Sicherheitsfunktion)

Bei Überlast (Einzellast oder Gesamtlast) schalten die Relais K1und K2 stromlos.

Die Abschaltzeit der Sicherheitsausgänge K1, K2 und O6 beträgt 100ms. Eine individuelle Einstellung der Abschaltverzögerung innerhalb der Applikation muss entsprechend dazu addiert werden.

6.2 Betriebszustände

Die ELMS1 Überlastsicherung hat drei Betriebszustände:

- Operation,
- Applikationsfehler,
- Systemfehler.

Operation

Der Betriebszustand der Operation ist der Normalzustand. Er dient der Sicherheitsfunktion. Alle weiteren Ausgänge werden kundenspezifisch bedient und haben keinen Einfluss auf die Sicherheitsfunktion.

Applikationsfehler

Bei einem Applikationsfehler liegen die sicherheitsgerichteten Signale der Kraftaufnehmer außerhalb des gültigen Bereichs oder die Signale der redundanten Eingänge der Sicherheitsabschaltung laufen auseinander. Die zulässige Betriebsspannung wird ebenfalls durch die Applikation überwacht.

Bei einem Applikationsfehler schalten K1 und K2 stromlos (Sicherheitsfunktion). Zusätzlich schaltet der Ausgang O6 energielos. Die Sicherheitsabschaltung hat keinen Einfluss auf die Zustände der übrigen, betriebsmäßigen, Ausgänge.

Systemfehler

Bei Überspannung ≥ 30 V bzw. bei Leitungsbruch an den Klemmen der Spannungsversorgung werden alle Ausgänge energielos geschaltet. Die LED-Matrix blinkt. Weitere Systemfehler sind: Speicher, CPU, Temperatur, fehlerhafte Datenübertragung etc.

6.3 Kundenspezifische Schaltschwellen

Zusätzlich zur Sicherheitsfunktion können **nicht sicherheitsgerichtete kundenspezifische Auswertungen** der Kraftaufnehmer erfolgen. Jeder Schaltschwelle kann ein bestimmter Ausgang zugeordnet werden.

Optional können Schaltschwellen kombiniert werden.

WARNUNG Alle nachfolgend genannten Schaltschwellen sind kundenspezifisch definiert und sind nicht Teil der Sicherheitsfunktion. Diese dürfen nur betriebsmäßig verwendet werden.

Beispiele für Schaltschwellen

Unterlast

WARNUNG

Unterlast entspricht der betriebsmäßigen Schlaffseilerkennung, ist jedoch nicht Teil der Sicherheitsfunktion.

Überwacht werden können bis zu vier Einzellasten oder die Gesamtlast als Summe der Einzellasten.

Der Absenkprozess wird gestoppt, wenn die Last (z.B. Container) abgesenkt ist und ihren Stellplatz erreicht hat. Ein weiteres Absenken des Greifers wird verhindert. Der Greifer kann somit nicht gegen die Last schlagen.

Überschreiten einer Einzellast

Abschaltung bei Überschreiten einer Schaltschwelle. Überwacht werden können bis zu vier Einzellasten (bis zu vier Kraftaufnehmer).

Der Hebeprozess wird gestoppt, wenn es an einer Ecke der Last zur Überlast kommt. Z.B. die gehobene Last bleibt an einer Ecke hängen.

E – Stop Funktion

Abschaltung bei Überschreiten einer Schaltschwelle. Überwacht werden können bis zu vier Einzellasten.

Der Hebeprozess wird direkt und ohne Abschaltverzögerung gestoppt.

Es können zwei Betriebsarten geschaltet werden.

Überschreiten einer Gesamtlast

Abschaltung bei Überschreiten einer Schaltschwelle. Überwacht wird die Summe aller Einzellasten. Der Hebeprozess wird gestoppt, wenn eine Gesamtlast überschritten wird.

Seitenlasten

Abschaltung bei Überschreiten einer Schaltschwelle. Überwacht werden können Teillasten aus bis zu vier Einzellasten. Für jede Seite der Last kann eine Teillast gebildet werden.

Der Hebeprozess wird gestoppt, wenn die Seitenlast überschritten wird.

Seitendifferenz

Abschaltung bei Überschreiten einer Schaltschwelle. Überwacht werden können Seitenlasten auf ihre Differenz zueinander.

Der Hebeprozess wird gestoppt, wenn der Differenzbetrag einer Seitenlast gegenüber der Anderen überschritten wird.

Laststundenzähler

Ein Laststundenzähler wird generiert. Erfasst werden können Einzellasten oder die Gesamtlast. Erfasst werden die Laststunden in Relation zur Nennlast.

 Beispiel Krananlage mit 100 t Nennlast: Gehobene Last: 100 t Erfasste Zeit: 1 h
 => Laststunden: 1h

Gehobene Last: 50 t Erfasste Zeit: 1 h => Laststunden: 0,5 h

 Optional können zwei unterschiedliche Schaltschwellen (in Stunden) eingestellt werden.

Laststundenzähler ist nicht als Sicherheitsfunktion bestimmt und darf nur betriebsmäßig verwendet werden.

6.4 Betriebsarten

Bestimmten kundenspezifische Schaltschwellen können bis zu acht Betriebsarten (Programm Modi) zugeordnet werden. Jeder Betriebsart wird eine eigene Schaltschwelle zugeordnet. Bei Erreichen dieser Schaltschwelle wird kundenspezifisch ein Ausgangssignal geschaltet. Die Schaltschwellen für jede Betriebsart können kundenseitig eingestellt werden.

Im Verdrahtungsplan sind die kundenspezifischen Schaltschwellen dokumentiert, die über Betriebsarten verfügen.

Die Betriebsarten und ihre Schaltschwellen sind nicht als Sicherheitsfunktion ausgeführt und beeinflussen diese nicht.

Zur Anwahl der gewünschten Betriebsart stehen drei digitale Eingänge zur Verfügung. Die Betriebsarten werden durch ein 3-bit-Signal gemäß der Tabelle angewählt.

Betriebsart	l11	l10	19
1	0	0	0
2	0	0	1
3	0	1	0
4	0	1	1
5	1	0	0
6	1	0	1
7	1	1	0
8	1	1	1
7 Montage

Montieren Sie die ELMS1 Sicherheitssteuerung in einem Schaltschrank mit einer Mindestschutzart von IP 54!

Staub und Feuchtigkeit können sonst zu Beeinträchtigungen der Funktionen führen. Der Einbau in einem Schaltschrank ist zwingend.

Die ELMS1 Steuerung ist einzubauen unter Berücksichtigung der nach **DIN EN 50274, VDE 0660-514** geforderten Abstände.

7.1 Abmessungen der Module

Fig. 13 Abmessungen der Module

	Höhe (H)	Breite (B)	Tiefe (T)
ELMS1-ZMV	114 mm	45 mm	99 mm
ELMS1-ZMVK ELMS1-ZMVA	114 mm	67,5 mm	99 mm
Sonstige	114 mm	22,5 mm	99 mm

7.2 Montage der Module

Die ELMS1 Sicherheitssteuerung besteht aus einem Zentralmodul und optionalen Erweiterungsmodulen. Die Module werden auf einer 35 mm Normschiene montiert. Dabei werden alle Module mit einem redundanten Normschienenbus miteinander verbunden. Der Normschienenbus befindet sich auf der Unterseite der Module und ist vormontiert.

	ACHTUNG	Beschädigung des Gerätes durch unsach- gemäße Montage
	ACHTUNG	Der Normschienenbus kann durch falsche Montagereihenfolge beschädigt werden.
		Halten Sie die Reihenfolge der Montage- schritte ein.
Ŵ	ACHTUNG	Quetschgefahr
	HINWEIS	Beachten Sie den Platzbedarf der Module bei der beim Ein- und Ausbau bedingten Kippbewegung.

Einbau

Fig. 14 Einbau Modul auf Hutschiene

- 1. Beginnen Sie mit dem Zentralmodul.
- 2. Haken Sie das Modul oben an der Normschiene ein.
- 3. Drücken Sie das Modul in Pfeilrichtung nach unten.
- 4. Montieren Sie das nächste Modul rechts neben dem Zentralmodul wie in den Punkten 1. und 2. beschrieben.
- 5. Schieben Sie das Modul auf der Normschiene bis zum Anschlag an das vorhergehende Modul nach links.
- 6. Wiederholen Sie den Vorgang bis alle Module montiert und miteinander verbunden sind.

Ausbau

Benötigtes Werkzeug: Schlitzschraubendreher Der Ausbau der Module erfolgt von rechts nach links.

Fig. 15 Ausbau Modul

- 1. Ziehen Sie das rechte Modul auf der Normschiene nach rechts bis der Normschienenbus keinen Kontakt mehr zum linken Modul hat.
- 2. Entriegeln Sie das Modul mit einem Schlitzschraubendreher.
- 3. Drücken Sie das Modul in Pfeilrichtung nach oben.
- 4. Wiederholen Sie den Vorgang mit allen weiteren Modulen.

7.3 Verdrahtung

Die ELMS1 Überlastsicherung ist eine kundenspezifisch konfigurierte Applikation und muss gemäß mitgeliefertem Verdrahtungsplan (ADPR2CSCXXXX) angeschlossen werden.

	ACHTUNG	Zur Spannungsversorgung des ELMS1 Überlastsicherung sind nur Netzteile er- laubt, die die Anforderungen für Funkti- onskleinspannungen mit sicherer elektri- scher Trennung (SELV, PELV) gemäß VDE 0100. Teil 410 entsprechen.
Â	ACHTUNG	Die geltenden Anforderungen zur fach- gerechten Verdrahtung gemäß DIN EN 60204-1 sind unbedingt einzuhalten.
Ŵ	ACHTUNG	Für den Anschluss der Kraftaufnehmer dürfen nur geschirmte Signalleitungen verwendet werden

Querschlüsse zwischen den Ausgängen sind durch eine entsprechende Kabelführung auszuschließen! Bei Kurzschlüssen zwischen der Leitung des Ausgangs zur Last und einer Versorgungsleitung ist die Last nicht mehr abschaltbar!

Deshalb:

Doppelte Aktoren, wie z. B. zwei Schütze in Reihe vorsehen.

Weitere Abschaltvorrichtungen wie z. B. einen Hauptschütz vorsehen.

Fehler z. B. durch eine separate Mantelleitung für Versorgungsspannungen ausschließen. Vor die Ausgangskontakte ist eine Sicherung zu schalten (siehe Technische Daten für die Relaisausgänge), um das Verschweißen der Relaiskontakte zu verhindern.

Bei induktiven Lasten ist an allen Ausgangskontakten eine ausreichende Schutzbeschaltung sicher zu stellen.

Die Nachfolgeschaltung muss derart erfolgen, dass ein einzelner Fehler nicht zum Verlust der Sicherheitsfunktion führt, z.B. durch Verwenden redundant ausgeführter Aktoren zur Abschaltung der Antriebe.(Siehe Fig. 16)

Fig. 16 Beispiel für das 2-kanalige Schalten von 230 VAC unter Anwendung der sicheren Relaisausgänge der ELMS1 Zentralmodule

7.4 Spannungsversorgung

Die Spannungsversorgung kann wie folgt realisiert werden:

1. Ein Netzteil zur Versorgung der Steuerung und aller Kraftaufnehmer. Dabei wird die zulässige Spannung durch die Steuerung überwacht.

2. Zwei Netzteile, eins zur Versorgung der Steuerung und des 1. Kanals jedes Kraftaufnehmers. Das zweite Netzteil zur Versorgung des 2. Kanals jedes Kraftaufnehmers.

Die Steuerung überwacht die Spannung des ersten Netzteils.

3. Drei Netzteile, eins zur Versorgung der Steuerung, das zweite Netzteil zur Versorgung des 1. Kanals jedes Kraftauf-nehmers und das dritte Netzteil zur Versorgung des 2. Kanals jedes Kraftaufnehmers.

Die Steuerung überwacht die Spannung des ersten Netzteil.

Werden zur Spannungsversorgung des ELMS1 Überlastsicherung und der Kraftaufnehmer unterschiedliche Spannungsnetzteile verwendet, so muss die Spannung auf Einhaltung der zulässigen Versorgungsspannung UB+ des Kraftaufnehmers gemäß den Anforderungen der PLd gemäß DIN EN ISO 13849-1: 2016-06 überwacht werden.

Für die Spannungsversorgung der Kraftaufnehmer gelten die Angaben aus der jeweiligen Betriebsanleitung für den verwendeten Kraftaufnehmer.

	GEFAHR	Zur Realisierung der Sicherheitsfunktion dürfen nur die redundanten Kraftaufneh- mer der Firma tecsis verwendet werden! Verwendet werden dürfen F23S1, F33S1, F53S1 sowie F73S1.
	GEFAHR	Werden unterschiedliche Spannungs- netzteile verwendet, so muss der Anwen- der im Fehlerfall für den sicheren Zu- stand der Anlage sorgen.
	GEFAHR	Manipulationen an der Applikation der Steuerung können zum Verlust der Sicherheitsfunktion führen und zu schweren Schäden oder zum Tod von Personen führen.
<u>\</u>	ACHTUNG	Beachten Sie die Vorgaben der Betriebs- anleitung für die Kraftaufnehmer.
Â	WARNUNG	Alle Leitungen müssen mechanisch ge- schützt werden. Geeignet sind z.B. In- stallationsrohre und Installationskanäle
Ŵ	WARNUNG	Es ist Leitungsmaterial aus Kupfer zu verwenden.

ACHTUNG

Die Folgeschaltung zur sicherheitsgerich-teten Abschaltung der Hubbewegung muss unter Berücksichtigung der für die zutreffende Art des Kranes relevante Produktnorm, z.B. DIN EN 15011, erfolgen

Ausführung Schaltschrank

HINWEIS

Im Falle einer Komplettlösung mit Schaltschrank ist die mitgelieferte Betriebsanleitung und der Verdrahtungsplan für den entsprechenden Schaltschrank zu beachten.

8 Inbetriebnahme

Bei der Inbetriebnahme muss die ELMS1 Überlastsicherung justiert, parametriert und validiert werden.

Die benötigte Software ist im Zentralmodul der ELMS1 Sicherheitssteuerung abgelegt und wird mit dem PC aufgerufen.

GEFAHR

Manipulationen an der Software oder an der Parametrierung der ELMS1 Überlastsicherung können zum Verlust der Sicherheitsfunktion führen und zu schweren Schäden oder zum Tod von Personen führen.

WARNUNG

Die Inbetriebnahme darf nur durch geschultes Personal erfolgen.

8.1 F	Prüfung vor	erster Inbetriebnahme
	ACHTUNG	Bei der Inbetriebnahme der ELMS1 Über- lastsicherung sind der Abschaltwert und die Sicherheitsfunktion des Systems ELMS1 zu überprüfen.
Ŵ	WARNUNG	Wenn in der zutreffenden Produktnorm o- der vom Hersteller des Kranes nicht an- ders vorgegeben (siehe Kap. 6.1), muss der Abschaltwert im Allgemeinen das 1,1- fache der Nenntragfähigkeit betragen.
Ţ	ACHTUNG	Nach der Durchführung einer statischen und dynamischen Prüfung ist es erforder- lich, das System der ELMS1 Überlastsi- cherung zu prüfen.

8.2 Installation Software

1. Verbinden Sie Ihren PC über ein USB Kabel mit dem Zentralmodul.

Die Software meldet sich als Laufwerk.

🕒 🗣 👝 k Computer 🕨	Vechseldatenträger (E:)	_	
Organisieren 👻 Freigeben fü	ir Brennen Neuer Ordner		
쑦 Favoriten	Name	Änderungsdatum	Тур
Desktop	Application	02.07.2014 8:17	Dateiordner
🚺 Downloads	Ja Rocumentation	02.07.2014 8:17	Dateiordner
🔚 Zuletzt besucht	III P. fibus	02.07.2014 8:17	Dateiordner
	퉬 Setup PC-Software	02.07.2014 8:17	Dateiordner
🖳 Computer			
🏭 Lokaler Datenträger (C:)			
- Wechseldatenträger (E:)			
🕒 🕞 – 🔰 🕨 Computer 🕨 V	Vechseldatenträger (E:) 🔸 Setup PC-Software		
Organisieren 👻 Freigeben fü	ir 🔻 Brennen Neuer Ordner		
🔆 Favoriten	Name 🔶	Änderungsdatum	Тур
E Desktop	setup_elms1_designer_v0346_27.02.15	02.03.2015 6:47	Anwendung
\rm Downloads 🔄 Zuletzt besucht			

Fig. 17 Software Installation

2. Installieren Sie die Software auf Ihrem PC und folgen Sie den Anweisungen des Betriebssystems.

8.3 Passwort

Die Software und die voreingestellten Parameter sind durch ein dreistufiges Passwortsystem vor unbefugten Veränderungen geschützt.

Level 2

Parameter und Prozesswerte können eingesehen werden. Die Applikation kann übertragen werden. Zugriff für den Anwender.

Level 1

Parameter und Prozesswerte können eingesehen werden. Die Applikation kann übertragen werden. Im Rahmen voreingestellten Grenzen können Parameter geändert werden. Zugriff für den Anwender. Voreingestellte Parameter sind in der Parameterliste aufgeführt.

GEFAHR

Eine Änderung der Parameter muss durch den Anwender nachvollziehbar dokumentiert werden und erfordert die Systemvalidierung, Prüfung und Dokumentation gemäß 8.10 – 8.12

Level 0

HINWEIS

Beinhaltet alle Rechte.

Es können Änderungen an der Applikation vorgenommen werden.

Zugriff nur für den Systemadministrator der Firma tecsis.

Das Passwort Level 0 ist permanent und wird bei jeder Speicherung der Applikation mit übertragen. => Die Applikation ist vom Anwender nicht veränderbar!

Passwortabfrage

Wird auf passwortgeschützte Anwendungen zugegriffen öffnet sich das Menü "Passwortabfrage".

^D asswortabfrage	2				×	
Diese Applikati	on ist passwortgeschützt!					
Zum Fortfahrei	n bitte ein Passwortlevel au	iswählen und passend	des Passwort eingeb	en.		
	C Level 0	Level 1	C Level 2	\neg		_
]			-
	ок		Abbruch			

Fig. 18 Passwortabfrage

- 1. Wählen Sie den gewünschten Level (1).
- 2. Bestätigen Sie Ihre Zugriffsrechte durch Eingabe des Passwortes (2).

Passwort ändern

Die Passwörter für die Level 1 und 2 werden vom Systemadministrator voreingestellt. Sie werden den Zugriffsberechtigten auf gesondertem Weg mitgeteilt und können entsprechend der Zugriffsrechte kundenseitig geändert werden.

Fig. 19 ELMS1 – Passwort wechseln

8.4 Aktuelles Projekt laden

 Laden Sie das aktuelle Projekt über das Menü: Datei – Öffnen. (Beispiel: ELMS1 – A5AF2XSC2014 PWtest.swl3)

Passwortabfrage!

Fig. 20 ELMS1 – A5AF2XSC2014_PWtest.swl3

8.5 Aktuelles Projekt speichern

Bei jeder Änderung der Parameter muss das Projekt erneut unter einem eindeutigen Namen und unter Beachtung des Versions- und Konfigurationsmanagements gespeichert werden.

- 1. Speichern des Projektes unter Datei Speichern unter.
- 2. Einen neuen Namen für die Datei vergeben.

ACHTUNG

Bei einer Änderung muss jedes Projekt unter einem neuen Namen nachvollziehbar gespeichert werden.

8.6 Automatisches Justieren

Passwortabfrage!

Beim automatischen Justieren werden die Lastwerte der Kraftaufnehmer mit den voreingestellten Parametern abgeglichen. Geprüft wird mit zwei Hebevorgängen:

- ohne Last (Nullpunkt),
- mit Referenzgewicht.

	ELN	1S1 - A5AF2X	SC2014_P	Wtest.slw3	3		
I I	Datei	Parameter	Projekt	Ansicht	Übertragung	Information	I
I I		> 🗟 🚔	2 🎒	[1]			1
I	-						

1. Klicken Sie "Parameter ► Tabelle Analogelemente".

Es öffnet sich das Menü "ELMS1 Übersicht - Analogelemente".

ocicie			-Programm N	lodus						
eusis	ELMST		1	2	3	4 5		3 7	8	
ezeichnung	Gatter	Online Wert	Level 1 (L1)		Level 2	(L2)	Ā	Max. nderun	,
C1Scale	NORM1	kg	0	0 kg	Gewicht bei 4 mA	10000	10000 kg	Gewicht bei 20 mA		^
C1Scale	NORM2	kg	0	0 kg	Gewicht bei 4 mA	10000	10000 kg	Gewicht bei 20 mA		
C1Scale	NORM3	kg	0	0 kg	Gewicht bei 4 mA	10000	10000 kg	Gewicht bei 20 mA		
C1Scale	NORM4	kg	0	0 kg	Gewicht bei 4 mA	10000	10000 kg	Gewicht bei 20 mA		
ingAOL	SWS1	kg	8000	8000 kg	delayed	0	0 kg		100%	
ingBOL	SWS2	kg	8000	8000 kg	delayed	0	0 kg		100%	
ingCOL	SWS3	kg	8000	8000 kg	delayed	0	0 kg		100%	
ingDOL	SWS4	kg	8000	8000 kg	delayed	0	0 kg		100%	
otalOL	SWS5	kg	25000	25000 kg	delayed	27000	27000 kg	direct	100%	
ingAUL	SWS6	ka	200	200 kg	delayed	0	kg		100%	*
		Übernehmen				Übernehmen				_
Adj	ustment 1		Ju	stierung - N	lanuell	V	Jus	tierung - Automatisch		
Adj	ustment 2		Ju	stierung - N	lanuell		Jus	tierung - Automatisch		
A TLÜ	н Г		1	00% Level	1 (L1)	-	- 100% Le	vel 2 (L2)		
•			Viel		a lOrad	Viel Augle	duna	Etkel Translant		
	Zelle	-	->(m)		d [Grad]	A[n] Ausia	aung	rikgi magiast		
		~.					Online	107-4		-
		0	12	0	0 T	10 x 10ms	Uniñe	Wert	100.01	
Sing		0		0	0	10 x 10ms	-	-	100 %	
Diagnose	starten	liagnose beer	iden	Dru	cken	Werte übern	ehmen	Reset LKZ	2]
										_

- 2. Wählen Sie das Hubwerk aus (1) Beispiel: Adjustment 1. (*Für Hubwerk 2, Adjustment 2*).
- Klicken Sie den Button "Justierung Automatisch" (2).

Es öffnet sich das Menü "ELMS1 Justierung".

Bezeichnung	Offset	Faktor		Steigung		Online	
AC1Scale	0 kg (0 kg)	1.0	(1.0)	100.0 %	(100 %)	3	300 kg
BC1Scale	0 kg (0 kg)	1.0	(1.0)	100.0 %	(100 %)	2	290 kg
CC1Scale	0 kg (0 kg)	1.0	(1.0)	100.0 %	(100 %)	3	300 kg
DC1Scale	0 kg (0 kg)	1.0	(1.0)	100.0 %	(100 %)	3	300 kg
					Summe:	11	190 kg
	Referenzgewicht	đ			000 290 000 000	AC1Scale BC1Scale CC1Scale DC1Scale AC1Scale	
	1 kg Justieren - Mit Gewicht					BC1Scale CC1Scale DC1Scale	
			. –				

Ohne Gewicht (Nullpunkt)

Fig. 23 ELMS1 Justierung – Ohne Gewicht (Nullpunkt)

- 4. Führen Sie zur Nullpunktprüfung einen Hebevorgang ohne Last aus.
- 5. Klicken Sie den Button "Justieren Ohne Gewicht" (1).

Das gemessene Gewicht wird angezeigt (2).

	Bei der Nutzung von Lastaufnahmemitteln ist deren Last bei der Festlegung der Überlast Schaltschwelle zu berücksichti- gen.
	Für die Parametrierung der Überlastsiche- rung ist es wichtig zu differenzieren, ob lose oder fest eingescherte Lastaufnah- memittel verwendet werden.
	Bei fest eingescherten Lastaufnahmemit- teln ist das Tragmittel zu beachten.
	Bei losen Lastaufnahmemitteln erfolgt die Lastmessung am Kranhaken (Nenntragfähigkeit).
CHTUNG	Nach Abschluss des automatischen Justierens muss die "Prüfung vor erster Inbetriebnahme" gem. Kap. 8.1 durchge- führt werden!

Referenzgewicht

Fig. 24 ELMS1 – Justierung – Referenzgewicht

- 1. Geben Sie im Editierfeld das verwendete Referenzgewicht ein (2).
- 2. Führen Sie einen Hebevorgang mit dem Referenzgewicht aus.
- 3. Warten Sie, bis die Last eingeschwungen ist und Sie ein stabiles Signal ablesen können.
- 4. Klicken Sie den Button "Justieren mit Gewicht" (2).

Das gemessene Gewicht wird angezeigt (3).

Bei einer erfolgreichen Justierung wird der Korrekturfaktor angezeigt (1).

- 5. Klicken Sie den Button "OK", um das Fenster zu schließen.
- Schließen Sie den Vorgang mit Übertragung der Daten und anschließender Dokumentation ab, siehe Kapitel 8.8 "Parametrierung".

8.7 Manuelles Justieren

Passwortabfrage!

Verändern sich Tara und Referenzgewicht durch physikalische Prozesse im Lauf der Zeit, kann manuell nachjustiert werden.

WARNUNG

Es liegt in der Verantwortung des Anwenders, die justierten Werte sinnvoll zu korrigieren.

MS1 Justierung				100	×
Bezeichnung	Offset	Faktor	Steigung		Online
AC1Scale	717 kg (0 kg)	2.389 (1.0)	238.9 %	(100 %)	11250 kg
BC1Scale	691 kg (0 kg)	2.383 (1.0)	238.3 %	(100 %)	11240 kg
CC1Scale	720 kg (0 kg)	2.399 (1.0)	239.9 %	(100 %)	11250 kg
DC1Scale	720 kg (0 kg)	2.399 (1.0)	239.9 %	(100 %)	11250 kg
				Summe:	44990 kg
		DK .	Abbruch		
	, in the second s		Abbruch		

Fig. 25 ELMS1 – Justierung – Manuelles Justieren

- Geben Sie die Korrekturen in die Editierfelder ein (1).
- 2. Klicken Sie den Button "OK", um das Fenster zu schließen.
- 3. Schließen Sie den Vorgang mit Übertragung der Daten und anschließender Dokumentation ab, siehe Kapitel 8.8 "Parametrierung".

Nach Abschluss des manuellen Justierens muss die "Prüfung vor erster Inbetriebnahme" gem. Kapitel 8.1 durchgeführt werden!

8.8 Parametrierung Passwortabfrage!

Parameter

Normierer	Bedeutung	Relevanz
AC1Scale	Sensor A (Kanal 1) Kenndaten	Sicherheitsgerichtet
BC1Scale	Sensor B (Kanal 1) Kenndaten	Sicherheitsgerichtet
CC1Scale	Sensor C (Kanal 1) Kenndaten	Sicherheitsgerichtet
DC1Scale	Sensor D (Kanal 1) Kenndaten	Sicherheitsgerichtet

Schalt- punkte	Bedeutung	Relevanz	verzögert	direkt	Programme
SingAOL	Sensor A Überlast (Ecklast/Einzellast)	Sicherheitsgerichtet	x	_	_
SingBOL	Sensor B Überlast (Ecklast/Einzellast)	Sicherheitsgerichtet	x	_	_
SingCOL	Sensor C Überlast (Ecklast/Einzellast)	Sicherheitsgerichtet	x	_	_
SingDOL	Sensor D Überlast (Ecklast/Einzellast)	Sicherheitsgerichtet	x	_	
TotalOL	Überlast Summe	Sicherheitsgerichtet	х	х	
SingAUL	Sensor A Unterlast (Ecklast/Einzellast)	Betriebsmäßig	x	—	—
SingBUL	Sensor B Unterlast (Ecklast/Einzellast)	Betriebsmäßig	x	_	_
SingCUL	Sensor C Unterlast (Ecklast/Einzellast)	Betriebsmäßig	x	—	_
SingDUL	Sensor D Unterlast (Ecklast/Einzellast)	Betriebsmäßig	x	_	_

Schalt- punkte	Bedeutung	Relevanz	verzögert	direkt	Programme
TotalOL2	Überlast Summe 2	Betriebsmäßig	х	х	8
TotalOL3	Überlast Summe 3	Betriebsmäßig	х	х	8
TotalUL	Unterlast Summe	Betriebsmäßig	х	_	_
AB-CD	Differenz der Seitenlasten (A+B) - (C+D)	Betriebsmäßig	x	_	_
AC-BD	Differenz der Seitenlasten (A+C) - (B+D)	Betriebsmäßig	x	_	_
SingA_TL	Sensor A Überlast (Ecklast/Einzellast) – E-Stop	Betriebsmäßig		x	2
SingB_TL	Sensor B Überlast (Ecklast/Einzellast) – E-Stop	Betriebsmäßig	_	х	2
SingC_TL	Sensor C Überlast (Ecklast/Einzellast) – E-Stop	Betriebsmäßig		х	2
SingD_TL	Sensor D Überlast (Ecklast/Einzellast) – E-Stop	Betriebsmäßig		х	2
A_Cmp_FS	Sensor A Kanaldifferenz (Kanal 1 zu Kanal 2)	Sicherheitsgerichtet	х	_	_
B_Cmp_FS	Sensor B Kanaldifferenz (Kanal 1 zu Kanal 2)	Sicherheitsgerichtet	х	_	—
C_Cmp_FS	Sensor C Kanaldifferenz (Kanal 1 zu Kanal 2)	Sicherheitsgerichtet	х	_	—
D_Cmp_FS	Sensor D Kanaldifferenz (Kanal 1 zu Kanal 2)	Sicherheitsgerichtet	x	_	—

Analog Ausgang	Bedeutung	Relevanz
AnOutl7	Analog Ausgang an der Klemme I7 (Option)	Betriebsmäßig
AnOutl8	Analog Ausgang an der Klemme I8 (Option)	Betriebsmäßig

Abschalt- verzöge- rung	Bedeutung	Relevanz
SingUL	Alle Unterlast (Ecklast/Einzellast)	Betriebsmäßig
SingOL	Alle Überlast (Ecklast/Einzellast)	Sicherheitsgerichtet
TotalOL	Überlast Summe	Sicherheitsgerichtet
TotalOL2	Überlast Summe 2	Betriebsmäßig
TotalOL3	Überlast Summe 3	Betriebsmäßig
TotalUL	Unterlast Summe	Betriebsmäßig
AB-CD	Differenz der Seitenlasten (A+B) - (C+D)	Betriebsmäßig
AC-BD	Differenz der Seitenlasten (A+C) - (B+D)	Betriebsmäßig
AICmpErr	Fehlerprüfung: Kanaldifferenz Kanal 1 zu Kanal 2 je- des Sensors	Sicherheitsgerichtet

Parametrierung Kraftaufnehmer

Bei der Inbetriebnahme und nach jedem Wechsel eines Kraftaufnehmers müssen die Parametereinstellungen der Kraftaufnehmer überprüft und angepasst werden.

tecsis	ELMS1		Programm Modus	3 4	5 6 7	8
Bezeichnung	Gatter	Online Wert	Level 1 (L1)		Level 2 (L2)	Max. Änderung
AC1Scale	NORM1	kg	0 kg	Gewicht bei 4 mA	10000 10000 kg Gewicht bei 20 m	A
BC1Scale	NORM2	kg	0 kg	Gewicht bei 4 mA	10000 10000 kg Gewicht bei 20 m	A
CC1Scale	NORM3	kg	0 kg	Gewicht bei 4 mA	10000 10000 kg Gewicht bei 20 m	A
DC1Scale	NORM4	kg	0 kg	Gewicht bei 4 mA	10000 10000 kg Gewicht bei 20 m	A _
SingAOL	SWS1	kg	8000 8000 kg	delayed	0 kg	100%
SingBOL.	SWS2	kg	8000 8000 kg	delayed	0 0 kg	100%
SingCOL	SWS3	kg	8000 8000 kg	delayed	0 kg	100%
			4 3		2 1	

Es werden die aktuell eingestellten Werte angezeigt (1/3).

- 1. Überprüfen Sie die Werte mit den Angaben auf den in der Krananlage eingesetzten Kraftaufnehmer.
- 2. Geben Sie die für die eingesetzten Kraftaufnehmer zutreffenden Werte in den Editierfeldern ein (2/4).
- 3. Schließen sie den Vorgang mit Übertragung der Daten und anschließender Dokumentation ab, siehe Kapitel 8.8.

	Es muss unbedingt auf die korrekte Ein- gabe der Gewichte in Abhängigkeit der Angaben auf dem Kraftaufnehmer geach- tet werden!
	Die Werte in den Editierfeldern (2 / 4) müs- sen entsprechend der Technischen Daten der verwendeten Kraftaufnehmer und in Anlehnung an das nachfolgende Beispiel parametriert werden.
VARNUNG	Die Eingabe in den Editierfeldern der Pa- rameter von Kalibrierbereich der Kraftauf- nehmer bzw. von den Überlast-Unterlast- schaltschwellen können nur in der Ein- heit "kg" eingegeben werden. Daraus folgt, dass der Umrechnungsfak- tor bei der Eingabe der Werte in die Edi- tierfelder (2 / 4) berücksichtigt werden muss. Einheiten: 1kg entspricht 9,81N.

Beispiel zur Umrechnung für einen 100kN Kraftaufnehmer:

100kN entsprechen 10.194kg (aufgerundet). Eingabe für das Gewicht bei 20mA: 10.194kg

Gehen Sie bei der Parametrierung besonders sorgfältig vor und beachten Sie die für den Einsatzort geltenden Vorschriften und Normen. Eine fehlerhafte Parametrierung kann die Sicherheit der gesamten **Applikation aufheben!**

Einstellung der Schaltschwellen

Die Einstellung der Schaltschwellen erfolgt über die Tabelle "Tabellen Analogelemente"

			[Programm]	lodus							
	ELMS1		1	2	3	4	5	6	7	8	
Bezeichnung	Gatter	Online Wert	Level 1	(L1)		L	evel 2 (L	2)		Max Änderu	:. ing
AC1Scale	NORM1		0	0 kg	Gewicht bei 4	mA	25000 25	000 kg Ge	ewicht bei 20 m	A 100%	
3C1Scale	NORM2		0	0 kg	Gewicht bei 4	mA	25000 25	000 kg Ge	ewicht bei 20 m	A 100%	
C1Scale	NORM3		0	0 kg	Gewicht bei 4	mA	25000 25	000 kg Ge	ewicht bei 20 m	A 100%	
C1Scale	NORM4		0	0 kg	Gewicht bei 4	mA	25000 25	000 kg Ge	ewicht bei 20 m	4 100%	
SingAOL	SWS1		20000	20000 kg	delayed		0 0	kg		100%	
SingBOL	SWS2		20000	20000 kg	delayed		0 0	kg		100%	
SingCOL	SWS3		20000	20000 kg	delayed		0 0	kg		100%	
ingDOL	SWS4		20000	20000 kg	delayed		0 0	kg		100%	
otalOL	SWS5		80000	80000 kg	delayed		85000 85	i000 kg dir	rect	100%	
inaAUL	SWS6		500	500 kg	delayed	Г	0 0	kg		10009	•
		Übernehmen				Übe	rnehmen				
			1	2			З	1		5	

Fig. 21

Die Schaltschwellen Überlast und Unterlast sind voreingestellt. Sie müssen in jedem Fall entsprechend der zutreffenden Tragfähigkeit des Hubwerks und der Anforderungen an eine Überlastsicherung gem. DIN EN 14492-2 angepasst werden.

Es werden die aktuell eingestellten Werte angezeigt (2/4).

 Überprüfen Sie die Schaltschwe
--

- 2. Geben Sie die gemäß Anforderung zutreffenden Werte in den Editierfeldern ein (1/3).
- 3. Schließen Sie den Vorgang mit Übertragung der Daten und anschließender Dokumentation ab , siehe Kapitel 8.8 "Parametrierung".

WARNUNG Jede Änderung an den Schaltschwellen muss gemäß Kap. 8.10 – 8.12 validiert, geprüft und dokumentiert werden.

WARNUNG Bei der Parametrierung der Schaltschwellen muss die gesamte Messtoleranz inkl. des verwendeten Kraftaufnehmers berücksichtigt werden.

Die gesamte Messtoleranz muss vom einzustellenden Abschaltwert abgezogen werden.

ACHTUNG

Die Kanaldifferenzen (A_CMP_FS; B_CMP_FS; C_CMP_FS; D_CMP_FS; siehe Kapitel 8.8 "Parametrierung" Schaltschwellen) müssen in Abhängigkeit der technischen Daten (Toleranzen) der verwendeten Kraftaufnehmer und unter Berücksichtigung der Ergebnisse der Risikobeurteilung für die zugehörige Krananwendung so klein wie möglich parametriert werden.

Fig. 28 Beispiel für die Ermittlung der gesamten Kanaldifferenz unter Beachtung der einzelnen Messtoleranzen

Die voreingestellte Kanaldifferenz ist sicherheitsrelevant. Der voreingestellte Grenzwert von 10% darf nicht überschritten werden!

Auswahl Betriebsart

Je nach der kundenspezifizierten Applikation können in jeder hinterlegten Betriebsart (Programm Modus) die Parametereinstellungen in einem voreingestellten prozentualen Rahmen angepasst werden.

Sind keine Betriebsarten hinterlegt, befindet sich die Applikation automatisch im Programm Modus 1.

tecsis	ELMS1		Programm M	/odus 2	3	4 5	6	5	7	8
Bezeichnung	Gatter	Online Wert	Level 1	(L1)		Level 2 (L2)		Ä	Max. nderung
AC1Scale	NORM1	kg	0	0 kg	Gewicht bei 4 mA	10000	10000 kg	Gewicht b	ei 20 mA	^
BC1Scale	NORM2	kg	0	0 kg	Gewicht bei 4 mA	10000	10000 kg	Gewicht b	ei 20 mA	
CC1Scale	NORM3	kg	0	0 kg	Gewicht bei 4 mA	10000	10000 kg	Gewicht b	i 20 mA	
DC1Scale	NORM4	kg	0	0 kg	Gewicht bei 4 mA	10000	10000 kg	Gewicht b	i 20 mA	
SingAOL	SWS1	kg	8000	8000 kg	delayed	0	0 kg			100%
SingBOL	SWS2	kg	8000	8000 kg	delayed	0	0 kg			100%
SingCOL	SWS3	kg	8000	8000 kg	delayed	0	0 kg			100%
SingDOL	SWS4	kg	8000	8000 kg	delayed	0	0 kg			100%
TotaIOL	SWS5	kg	25000	25000 kg	delayed	27000	27000 kg	direct		100%
SinoAUL	SWS6	ka	200	200 kg	delayed	ol	0 ka			100%
		Übernehmer				Übernelimen				_
			8	7	6	5	4	3	2	1

Fig. 29	ELMS1 Übersicht – Analogelemente
---------	----------------------------------

1. Wählen Sie den Programm Modus (2).

Es werden die voreingestellten angezeigt (4/7).

Applikationsabhängig gibt es direkte (3) und zeitverzögerte (6) Schaltschwellen.

2. Überprüfen Sie die voreingestellten Werte anhand der mitgelieferten kundenspezifischen Parameterliste.

Die voreingestellten Werte können im Rahmen der angegebenen Prozentwerte verändert werden (1).

- 3. Geben Sie die gemäß Anforderung zutreffenden Werte in den Editierfeldern ein (5/8).
- 4. Schließen Sie den Vorgang mit Übertragung der Daten und anschließender Dokumentation ab, siehe Kapitel 8.8 "Parametrierung".

Abschaltverzögerungen

Bei zeitverzögerten Schaltschwellen kann die voreingestellte Abschaltverzögerung an die physikalischen Eigenschaften der Krananlage angepasst werden.

Die Anforderungen der DIN EN 14492-2 müssen für die korrekte Parametrierung der Überlastsicherung in Bezug auf den Abschaltwert und die Abschaltverzögerung zwingend eingehalten werden.

ELMS1 Übersicht - Analogelemente						×
tecsis Elms1	Online	1 2	3	4 5	6 7	8
SingOL V	T1 0	T2 0	T3 0 0	T 10 x 10ms 10 x 10ms	Online Wert	100 %
3		2		1		

Die Editierfelder T1 –T3 (2) sind ohne Funktion (Reserve).

- 1. Wählen Sie den Block aus (3).
- 2. Geben Sie die gemäß Anforderung zutreffende Abschaltverzögerung ein (1).
- 3. Schließen Sie den Vorgang mit Übertragung der Daten und anschließender Dokumentation ab, siehe Kapitel 8.8.

HINWEIS	Die Abschaltverzögerungen für die Einzel überlasten (SingAOL –SingDOL) können über den Block "SingOL" angepasst werden. (siehe Punkt 3 in Fig. 30)			
WARNUNG	Die Parameter sind in Abhängigkeit der Risikobeurteilung bzw. Gefährdungsbeur-			

IG Die Parameter sind in Abhängigkeit der Risikobeurteilung bzw. Gefährdungsbeurteilung so klein wie möglich einzustellen!

Traglastüberwachung

Die Traglastüberwachung hat keine sicherheitsrelevante Funktion.

Diese Funktion ist vorbereitet und kann kundenspezifisch implementiert werden.

EL	MS1 Übersi	:ht - A	nalogelemente	•							×
	tecsi	3	ELMS1	Online	-Program	n Modus 2	3	4	5	6 7	8
	2	TLÜ				100% Leve	I 1 (L1)		100%	Level 2 (L2)	
			Zeile	•	X[m]		a [Grad]		X[m] Ausladung	F[kg] Traglast 	

Fig. 31 ELMS1 Übersicht – Analogelemente – TLÜ

Onlinewerte

Jeder Kraftaufnehmer liefert ein sicherheitsgerichtetes Lastsignal, das je nach kundenspezifischer Applikation als Eingangssignal zur Auswertung verfügbar ist. Identische Eingangssignale sind an Gruppenbezeichnungen zu erkennen.

Beispiel: der Kraftaufnehmer **A** generiert die Eingangssignale **A**C1Scale (Lastwert) und die Schaltschwellen Sing**A**OL, Sing**A**UL etc.

Die Onlinewerte SingAOL, SingBOL, SingCOL, SingDOL werden zu einem Summenlastwert TotalOL addiert (Gesamtlastüberwachung).

Aktuelle Onlinewerte

Die aktuellen Onlinewerte (2) können über die Online Diagnose eingesehen werden.

tecsis	ELMS1		Programm Modus	3 4	i 5 (3 7	8
Bezeichnung	Gatter	Online Wert	Level 1 (L1)		Level 2 (L2)	X	Max.
AC1Scale	NORM1	kg	0 0 kg	Gewicht bei 4 mA	10000 10000 kg	Gewicht bei 20 mA	^
BC1Scale	NORM2	kg	0 0 kg	Gewicht bei 4 mA	10000 10000 kg	Gewicht bei 20 mA	
CC1Scale	NORM3	kg	0 0 kg	Gewicht bei 4 mA	10000 10000 kg	Gewicht bei 20 mA	
DC1Scale	NORM4	kg	0 0 kg	Gewicht bei 4 mA	10000 10000 kg	Gewicht bei 20 mA	
SingAOL	SWS1	kg	8000 8000 kg	delayed	0 0 kg		100%
SingBOL	SWS2	kg	8000 8000 kg	delayed	0 0 kg		100%
SingCOL	SWS3	kg	8000 8000 kg	delayed	0 0 kg		100%
SingDOL	SWS4	kg	8000 8000 kg	delayed	0 0 kg		100%
TotalOL	SWS5	kg	25000 25000 kg	delayed	27000 27000 kg	direct	100%
SingAUL	SWS6	ka	200 200 kg	delayed	0 0 kg		100% -
Diagnose	starten	Diagnose been	iden Dru	cken V	Verte übernehmen	Reset LK	z
<u> </u>							
4		2					

1. Klicken Sie den Button "Diagnose starten" (4).

Die aktuellen Online Werte werden angezeigt (2).

Editiern

Um zum Parametriermodus zurück zu kehren (1) muss die Online Diagnose mit "Diagnose beenden" (3) geschlossen werden.

Analogausgänge (nicht sicherheitsgerichtet)

Ist das Zentralmodul der ELMS1 Steuerung mit analogen Ausgängen ausgestattet, müssen alle verwendeten analogen Ausgänge parametriert werden.

Die analogen Ausgänge setzten eine minimale und maximale Last in ein Spannungssignal um (0 - 10 V). Die gewünschten Einstellungen sind frei wählbar.

Passwortabfrage!

Fig. 33 ELMS1 Übersicht – Analogausgänge

- Geben Sie die gewünschten Werte in den Editierfeldern ein (1 = maximal / 2 = minimal).
- 2. Schließen Sie den Vorgang mit Übertragung der Daten und anschließender Dokumentation ab, siehe Kapitel 8.8 "Parametrierung".

8.9 Übertragung der Applikationsdaten

Bei der Inbetriebnahme und nach jeder Veränderung der Anwendungsparameter muss die Applikation dokumentiert und validiert werden.

Passwortabfrage!

Die abgeglichenen Werte müssen zunächst übernommen werden.

ELMS1 Übersicht - Analogelemente			×
tecsis ELMS1	Programm Modus	4 5 6	7 <u>8</u>
Diagnose starten Diagnose t	Drucken	Werte übernehmen	Reset LKZ

Fig. 34 ELMS1 Übersicht – Werte übernehmen

1. Klicken Sie den Button "Werte übernehmen" (1).

Die abgeglichenen Werte müssen anschließend in das Zentralmodul übertragen werden.

1	ELMS1 - A5AF2XSC2014_PWtest.slw	3		
I I	Datei Parameter Projekt Ansicht	Übertragung	Information	1
1	🗋 🗁 🔚 🚔 🕜 🚔 [1]			
i				1

Fig. 35 ELMS1 - Übertragung – Applikation übertragen

- 1. Klicken Sie "Übertragung ► Applikation übertragen".
- Schließen Sie den Vorgang "Dokumentation" mit einem Neustart des Systems (Spannungsunterbrechung) ab.

Nach jeder Änderung der Parameter muss das neue Projekt gemäß Kapitel 8.4 eindeutig gespeichert werden.
8.10 Validierung der ELMS1 Steuerung

Passwortabfrage!

Die Validierung der ELMS1 Steuerung stellt die Richtigkeit der vorgenommenen Änderungen an den Daten und die korrekte Übertragung der Daten an das Zentralmodul fest.

	📫 ELMS1 - A5AF2X	SC2014_P	Wtest.slw?	3		
I I	Datei Parameter	Projekt	Ansicht	Übertragung	Information	1
1	N 🖻 🕞 📥		[1]			
						1

Fig. 36

ELMS1 – Projekt – Projekt Validierung

1. Klicken Sie "Projekt ► Projekt Validierung".

Es öffnet sich das Menü "ELMS1 Validierung".

	Validie	erung starten	
Checksumme	SSI1-Tabele	NORMERER-Tabelle	Lastkollektivzähler-Tabelle
DNCO1-Tabelle	SSI2-Tabelle	ADDIERER-Tabelle	Träglasfüberivattibingstabelle
DNCO2-Tabelle	SSI3-Tabele	SUBTRAHIERER-Tabelle	DNC02-Tabelle SCN
Positionswertetabelle	SSI4-Tabele	Betragssubtrahierer-Tabelle	
DZU1-Tabelle	FB-Tabele	AIC-TABElle	
UZUZ-Tabele	ro-radele-2	Schweiwertschalter-Tabelie	
Zöhler Tabelle	PB-Lautzeit-Tabelle	Applerer-Tabelle	
ChkSum Projekt ChkSum APP ChkSum NL ChkSum Master	ChkSum DZÜ ChkSum DXCO ChkSum FB	ChkSum Analog	
ChkSum Slave			
Validierung OK Es wurde keine Validierung dk Validierung wird nicht untersti	urchge führt Jitzt		

Fig. 37 ELMS1 Validierung

2. Starten Sie die Validierung (1).

Stellt das System einen Hardware-Fehler fest erfolgt eine Fehlermeldung.

Das System meldet die erfolgreiche Validierung.

Fig. 38 ELMS1 – erfolgreiche Validierung

Das System erzeugt einen Prüfbericht im Format PDF.

3. Speichern Sie den Prüfbericht mit einem eindeutigen Namen ab.

8.11 Parametrierung Prüfen

- 1. Heben Sie gemäß der eingestellten Schaltschwellen die Prüflast.
- Prüfen Sie, ob die Schaltschwellen gemäß Ihrer Applikation die Sicherheitsfunktion der Überlastsicherung auslösen.

ACHTUNG Nach Änderung der sicherheitsgerichteten Parameter muss die "Prüfung vor erster Inbetriebnahme" gem. Kapitel 8.1 durchgeführt werden!

8.12 Systemvalidierung und Dokumentation

HINWEIS Die Dokumentation der Validierung muss der Maschine zugeordnet und beigefügt werden.

Passwortabfrage!

Die Sicherheitsfunktion muss auf ihre Gültigkeit überprüft werden. (siehe: Kap. 8.1 "Prüfung vor erster Inbetriebnahme")

Die Systemvalidierung ist vom Anwender vorzunehmen.

1. Heben Sie eine Prüflast.

Die Überlastsicherung muss auslösen.

- 2. Überprüfen Sie alle relevanten Schaltausgänge.
- Speichern Sie die Anwendungsparameter in einer Sicherheitskopie auf der Speicherkarte der ELMS1 Steuerung gemäß Kapitel 8.4. Diese Datei wird für weitere Datenzugriffe auf die ELMS1 Steuerung benötigt.

ACHTUNG

Achten Sie beim Speichern der Anwendungsparameter auf den Erhalt der Originaldatei unter Beachtung des Versions- und Konfigurationsmanagements.

9 Wiederkehrende Prüfung

Die ELMS1 Überlastsicherung muss nach dem Einbau und entsprechend der Einsatzbedingungen mindestens jährlich auf den Erhalt der Sicherheitsfunktion überprüft werden.

	WARNUNG	Die Prüfungen von Arbeitsmitteln im Betrieb sind in nationalen Vorschriften geregelt. Die Überprüfung der Sicherheits- funktion des Systems ist zwingend erforderlich.
Â	WARNUNG	Die jährliche Prüfung ist eine Sicht- und Funktionsprüfung, bei der auch der Ab- schaltwert und die Sicherheitsfunktion der ELMS1 Überlastsicherung zu prüfen sind.

10 Instandsetzung

10.1 Störung

Nach der Fehlerbehebung wird der automatische Wideranlauf der sicherheitsgerichteten Schaltausgänge verhindert.

Das System muss neu gestartet werden.

Der sichere Zustand ist der stromlose Zustand.

Das System darf nicht überbrückt werden

Die ELMS1 Überlastsicherung unterscheidet zwei Betriebszustände, die eine Störung des Systems zeigen:

- Applikationsfehler,
- Systemfehler.

Die Fehlerbehebung ist in beiden Fällen identisch.

- 1. Überprüfen Sie die Versorgungsspannung.
- Überprüfen Sie die Signalleitungen auf gültige Werte, siehe Kapitel 8.7 "Parametrierung". Liegen Signale außerhalb der gültigen Werte:
- 3. Überprüfen Sie die dazugehörigen Betriebsmittel auf fehlerfreies Arbeiten.
- 4. Überprüfen Sie die Signalleitungen.
- 5. Tauschen Sie gegebenenfalls Signalleitungen und Betriebsmittel aus.
- Starten Sie die ELMS1 Steuerung neu. (Power off / on)

Liegt der Fehler immer noch an:

7. Wenden Sie sich an den Kundendienst.

Ŵ	WARNUNG	Die verwendeten Kraftaufnehmer müssen im Kranbetrieb zusätzlich zu den nationa- len Prüfvorschriften regelmäßig kontrol- liert werden. Die Prüfung der Kraftaufneh- mer muss durch Ausbau nach längstens 10 Jahren erfolgen
		Die Kontrolle bezieht sich z. B. auf sicht- bare Schäden, Vollständigkeit, ordnungs- gemäße Befestigung und ordnungsgemä- ßen Zustand. Wird bei der Kontrolle z.B. eine nicht ord-nungsgemäße Befestigung festge- stellt, oder ist der feste Sitz nicht mehr si- cher-gestellt,
		so kann in Zweifelsfällen eine Demontage zur sachgerechten Beurteilung erforder- lich werden.

10.2 Rack Diagnose

Das ELMS1 System bietet die Möglichkeit eine Rack Diagnose durchzuführen. Hierfür wird die Software ELMS1 Designer benötigt.

Stellen Sie die Verbindung zwischen dem ELMS1 Modul und dem PC / Laptop mittels USB-Kabel her. Starten Sie durch einen Doppelklick auf das ELMS1 Designer Icon auf Ihrem Desktop die Software.

Sobald die grafische Benutzeroberfläche der Software auf Ihrem Desktop erscheint muss durch einen Mausklick auf die Schaltfläche "Ordner" in der linken oberen Ecke das vorhanden Projekt geladen werden. (Das Projekt ist die Applikationsdatei mit der Endung *.slw3 und diese Applikationsdatei befindet sich im ZIP Verzeichnis des Flashspeicher Ihres ELMS1 Moduls).

Fig. 39 Aktuelle Applikation Öffnen

Als nächstes folgt der Schritt die Funktion der Rack Diagnose aufzurufen. Hierzu ist die Registrierkarte *"Rack Diagnose"* (rot markiert) durch einen Mausklick zu betätigen.

Fig. 40 Rack Diagnose starten

Die Benutzeroberfläche der Registrierkarte Rack Diagnose wird geladen. Hierzu einige Sekunden Warten bis der Ladevorgang abgeschlossen ist.

Betriebsanleitung ELMS1

Datei Parameter Projekt Ansicht Ubertragung Information						
Gerätekonfiguration	gik Rack Dia					
		tte v	varte	en		
0	1	2	3	4	5	

Fig. 41 Rackdiagnose Initialisierung

Nun Wählen Sie die Schaltfläche *"Fehler Diagnose"* (rot markiert) aus.

Datei Parameter	Projekt	Ansicht	Übertragung	Information		
🗋 🖻 🖬 🚔	2 🌥	[1]	<u></u>		00	2 🖏
🚛 Gerätekonfigura	tion Log	gik Racl			Fehle	er Diagnose

Fig. 42 Fehler Diagnose starten

Wird ein Systemfehler erkannt so wird die entsprechende Fehlermeldung im Anzeigefenster der Benutzeroberfläche dargestellt. Die folgende Abbildung zeigt ein Beispiel für eine solche Fehlermeldung.

*	*	🔅 🐧		
	Fehler Nr. 0	I-0000 M	221	ChkSum Konfigurator
Modulfehler! Modul melo	det sich nicht beim ZM	latz 1	221	ChkSum Projekt
Die Kalte in folgende	Estimate a		203	ChkSum APP
Applikationsfehler	Henler Nr. 0-	00160 MS	20	ChkSum Master
Applicationsteriller	E-M-M		20	ChkSum Slave
Karte febit	Fenier Nr.	1-0314	93	ChkSum NL
Nane renit			 1	ChkSum FB
				ChkSum DS
			199	ChkSum Analog
			0348.1	Firmware-Release
			ZMV	Modul
			ELMS1	Maschine
			0348	Version
			TECSIS	Autor
			06.06.18	Datum
			0348	Firmware
				V ANALOG
			SSI	FBNL
				MUTE
			DNCO	

Fig. 43 Anzeige Fehler Diagnose

Wird kein Systemfehler ermittelt so bleibt das Anzeigefenster leer. Vorhandene Systemfehler können abgespeichert und zur Diagnose und Fehlerbehebung an tecsis gesendet werden.

10.3 Ersatzteile

Die ELMS1 Überlastsicherung ist modular aufgebaut. Jedes Modul kann im Fehlerfall einzeln ausgetauscht werden.

Wird das Zentralmodul ausgewechselt, ist es notwendig, die Applikationsdatei auf das neue Zentralmodul zu überspielen. Liegt eine mit aktuellen Parametern versehene Applikationsdatei vor, ist das System danach betriebsbereit.

ACHTUNG Zum Erhalt der sicherheitsrelevanten Messgenauigkeit muss nach dem Tausch eines Zentralmoduls das System neu justiert werden!

Liegt keine Applikationsdatei mit aktuellen Parametern vor, muss das System mit Prüfgewichten neu parametriert und justiert werden, siehe Kapitel "Inbetriebnahme" auf Seite 45.

11 Transport

Die ELMS1 Steuerung befindet sich in einer Kartonverpackung. Entsorgen Sie die Verpackung umweltgerecht. Halten Sie beim Transport, Lagerung und im Betrieb die Bedingungen nach EN 60068-2-1, 2-2 ein.

Altpapierverwertung.

Geben Sie die Kartonverpackung in die

Die Kraftaufnehmer können ie nach ihrer Größe und Art individuell verpackt werden.

12 Lagerung

HINWEIS

HINWEIS

HINWEIS

ELMS1: Lagern Sie die ELMS1 Überlastsicherung in einer trockenen Umgebung die mindestens den Schutzgrad IP54 für Steuerungen ausweist . Die Umgebungstemperatur muss zwischen -40°C und +85°C betragen.

Die ELMS1 Steuerung hat den Schutzgrad IP20.

Kraftaufnehmer: Bei der Lagerung muss sich die Schutzkappe immer auf dem elektrischen Anschluss befinden, um einen Feuchtigkeitseintritt sowie Schmutz zu vermeiden.Zulässige Bedingungen am Lagerort: Lagertemperatur: -40 ... +85 °C

Feuchtigkeit: 35 ... 85 % relative Feuchte (keine Betauung)

Die Schutzart IP67 wird bei den Kraftaufnehmern nur im gesteckten Zustand garantiert.

13 Entsorgung

Entsorgen Sie bei einer endgültigen Außerbetriebnahme die ELMS1 Überlastsicherung umweltgerecht.

HINWEIS

Geben Sie die ELMS1 Steuerung in die Elektronikverwertung.

14 Sicherheitskenndaten

14.1 Systemgrenzen

Bei der ELMS1 Überlastsicherung handelt es sich aus sicherheitstechnischer Sicht um ein Teilsystem einer Maschinensteuerung bestehend aus Sensorbrücke und Messverstärker von bis zu vier Kraftaufnehmern und einer Sicherheitssteuerung (ELMS1 Steuerung).

Dieses Teilsystem wird zweikanalig nach Kategorie 3 gemäß der DIN EN ISO 13849-1 aufgebaut.

Dabei bilden Kraftaufnehmer das SRP/CSa Teilsystem und die Steuerung das SRP/CSb.

1 = Last messen, 2 = Energielos schalten bei Überlast oder Fehler

Die Systemgrenze beginnt bei der Signalerfassung am Kraftaufnehmer und endet am Schaltausgang der ELMS1 Steuerung.

14.2 Sicherheitsparameter ELMS1 Sicherheitssteuerung

Für das Zentralmodul der ELMS1 Sicherheitssteuerung, welches die Sicherheitsfunktion ausführt, gelten nachfolgende Sicherheitsparameter.

ELMS1 Steuerung als Teilsystem SRP/CSb:

Gebrauchsdauer = 20 Jahre MTTFd = 79 Jahre DC = 99% SFF = 99% PFHd = 3×10^{-8} CCF = 95 Performance Level = PLe

WARNUNG

Erweiterungsmodule haben keinen einfluss auf die Sicherheitsfunktion. Die Sicherheitsparameter diese Module können zur Verfügung gestellt werden.

14.3 Sicherheitsparameter Kraftaufnehmer

Nachfolgende Sicherheitsparameter gelten bei einer Betriebstemperatur von 85°C.

Ein Kraftaufnehmer als Teilsystem SRP/CSa:

```
Gebrauchsdauer = 20 Jahre
MTTF<sub>d</sub> = 254 Jahre
DC = 90%
PFH<sub>d</sub> = 4,48 x 10<sup>-8</sup>
CCF = 85
Kat. = 3
```

Zwei Kraftaufnehmer als Teilsystem SRP/CSa:

Gebrauchsdauer = 20 Jahre MTTF_d = 127 Jahre DC_{avg} = 90% PFH_d = 9,96 x 10^{-7} CCF = 85 Kat. = 3

Vier Kraftaufnehmer als Teilsystem SRP/CSa:

Gebrauchsdauer = 20 Jahre MTTFd = 63 Jahre DCavg = 90% PFHd = 1,79 x 10^{-7} CCF = 85 Kat. = 3

Alle Parameter beziehen sich auf die Sensorbrücke und den Messverstärker. Die mechanische Komponente Messfeder (Stahlkörper) ist von dieser Betrachtung ausgeschlossen.

14.4 Sicherheitsparameter ELMS1 Überlastsicherung

Bei der Gesamtbetrachtung werden zwei Ausbaustufen berücksichtigt. Beide setzen sich aus einer ELMS1 Steuerung (SRP/CSb) und zwei bzw. vier Kraftaufnehmer (SRP/CSa) zusammen.

WARNUNG

Jede weitere Komponente, welche an der Sicherheitsfunktion beteiligt ist, muss für den gesamt-PFH_d des Systems Überlastsicherung ELMS1 berücksichtigt werden. (z.B. Schaltelemente, Netzteile etc.)

ELMS1 Sicherheitssteuerung mit zwei Kraftaufnehmern (SRP/CS):

Gebrauchsdauer = 20 Jahre MTTFd = 48 Jahre DCavg = 95%PFHd = 1,20 x 10^{-7} Kat. = 3

ELMS1 Sicherheitssteuerung mit vier Kraftaufnehmern (SRP/CS):

Gebrauchsdauer = 20 Jahre MTTFd = 35 Jahre DCavg = 94% PFHd = 2,09 x 10^{-7} Kat. = 3

15 Technische Daten

Die Technischen Daten der Kraftaufnehmer sind in der mitgelieferten Betriebsanleitung "Kraftaufnehmer " dokumentiert und müssen bei der "Parametrierung des Systems", siehe Kapitel 8.8, zwingend beachtet eingehalten werden.

Allgemeine Technische Daten Elektrische Anforderungen

ELMS1 Sicherheitssteuerung							
Betriebsspannur		24V [DC für a	alle Modu	ıle,		
A1 und A2 am Z	entralmo	-	Tolera	anz -15	5 % + 10	%	
dul							
Restwelligkeit UB			max. 10 %				
Eingangsstrom i	über A1		≤4 A	/ interr	ne Sicher	ung: 6 A	
an allen Zentralr	nodulen						
ELMS1	ZMV	ZN	IVK/	INV	IOV	RMV	BUS
		ZN	IVA				
Leistungsauf- nahme [W]	2,9	7,7	7	1,7	2,2	4,8	1
Betriebsstrom [mA]	140	36	0	90	120	220	70

Stromeingänge (4-20mA) können zerstört werden bei Eingangsspannung >12V

Umgebungsbedingungen

Betriebstemperatur	-10 +60°C
Lagertemperatur	-40 +85°C
Genauigkeit der analogen Eingänge	±3% vom Endwert über den Temperaturbereich -10 bis +60°C
Siehe Hinweis weiter unten	
Rüttelfestigkeit in allen 3 Ebenen	Sinus 10–55 Hz, 0,35 mm, 10 Zyklen, 1 Oktave /min
Schockfestigkeit der Aus- gangsrelais	≤ 5g, 11ms in allen 3 Ebenen
Anschlussquerschnitt	0,2 bis 1,5 mm2 (AWG24-16)
Gehäusematerial	Polyamid PA unverstärkt
Schutzarten	Gehäuse und Klemmen: IP20, Einbauort: minimal IP 54
Eingangsspannung der Eingänge	24 V DC –15%, + 10%
Stromaufnahme der Eingänge	maximal 4,0 mA
Eingangsfrequenz I9 – I12 Zentralmodul	 ≤ 1200 Hz bei HTL-Signalen über z. B. Näherungsschalter
Eingangsfrequenz I9 – I16 Zentralmodul	≤ 50 KHz bei HTL-Signalen über inkrementelles Messsystem

Technische Daten der Halbleiterausgänge

ELMS1	ZMV/ ZMVK /ZMVA			
Ausgänge	101-104	01–06		
Ausgangsart	<u> </u>	<u> </u>		
Schalt- und Dauerstrom Ω / L	0,25 A	1 A		
Summe Schalt-, Dauerstrom Ω / L	0,8 A	3 A		
Minimaler Schaltstrom Ω / L	1 mA	1 mA		

Halbleiterausgänge werden intern bei Leitungsbruch an A2 abgeschaltet. Restspannung ist nicht möglich. Halbleiterausgänge sind kurzschluss- und überlastsicher und mit Freilaufdiode versehen zur Entstörung der Last.

Technische Daten der Kontaktausgänge

ELMS1	ZMVK	RMV
Ausgänge	K3 – K6	K1 – K2
Ausgangsausführung		
Minimaler Schaltstrom	10 mA	10 mA
Schaltvermögen nach DIN EN 60947-4-1/ EN 60947-5-1	DC1: 24 V/ 6 A DC13: 24 V/ 5 A 0,1 Hz	DC1: 24 V/ 6 A DC13: 24 V/ 4A 0,1 Hz
Schaltvermögen nach DIN EN 60947-4-1/ EN 60947-5-1		AC1: 250 V/ 6 A AC15: 230 V/3 A

Summe der Schalt- und Dau- erströme	K3, K4: ≤ 6 A, K5, K6: ≤ 6 A	K1: ≤ 4 A, K2: ≤ 4 A
Lebensdauer ⁽¹⁾ bei DC13: 24V/ 1A	1x10 ⁵	9x10 ⁵
Lebensdauer ⁽¹⁾ bei DC13: 24V/ 4A	4x10 ⁴	7x10 ⁴
Lebensdauer ⁽¹⁾ bei AC15: 230V/ 1A		7x10 ⁵
Lebensdauer ⁽¹⁾ bei AC15: 230V/ 2A		5x10 ⁵
Mechanische Lebensdauer ⁽¹⁾	> 10 ⁷	> 40 x 10 ⁶
Maximale Schaltspiele bei DC13: 4A	360 Zyklen/h	360 Zyklen/h
Maximale Schaltspiele bei DC13: 3A		360 Zyklen/h
Kontaktabsicherung	6 A träge	6 A träge

ELMS1	ZMVK	RMV
Kurzschlussfestigkeit /	1000 A SCPD	200 A/ B6
Vorsicherung Automat	6 A	800 A/ 6AgL
Schmelzsicherung gG		
Bemessungsisolationsspan-		250 V AC
nung		
Stoßspannungsfestigkeit		4 KV
Verschmutzungsgrad 2		
Ansprech- und Rückfallzeit ty- pisch [Relais]	10 mS/ 3 mS	10 mS
Gesamte Ansprechzeit der Si- cherheitsfunktion	100 ms	Keine Sicher- heitsfunktion

Technische Daten der Kontaktausgänge

⁽¹⁾Lebensdauer der Ausgangskontakte bei 24V

AC1: Steuern von nicht induktiver oder schwach induktiver Last bei Wechselspannung

AC15: Steuern von elektromagnetischer Last bei Wechselspannung

DC1: Steuern von nicht induktiver oder schwach induktiver Last bei Gleichspannung

DC13: Steuern von elektromagnetischer Last bei Gleichspannung

Zur gesamten Ansprechzeit der Sicherheitsfunktion muss immer die individuell eingestellte Abschaltverzögerung innerhalb der Applikation dazu addiert werden.

Lebensdauer der Ausgangskontakte bei 24 V Arbeitstage pro Jahr dop: 260 Arbeitsdauer pro Tag hop: 8 h

ELMS1	ZMV, ZMVA, ZMVK: K1, K2					
Last Art	DC1	DC13	DC1	DC13	DC1	
Schaltstrom	1 A	1 A	4 A	4 A	6 A	Jahre
Schaltspiele	384	15	192	1	153	5
	192	7	96	0.5	76	10
	96	3.6	48	0.25	38	20

ELMS1	ZMVK: K3, K4, K5, K6					
Last Art	DC1	DC13	DC1	DC13	DC1	
Schaltstrom	1 A	1 A	4 A	4 A	6 A	Jahre
Schaltspiele	144	15	36	5	29	5
	77	7	17	2	14	10
	38	3.6	8	1	7	20

Lebensdauer der Ausgangskontakte bei 24 V

Arbeitstage pro Jahr dop: 260 Arbeitsdauer pro Tag hop: 8 h

ELMS1	RMV: K1, K2					
Last Art	DC1	DC13	DC1	DC13	DC1	
Schaltstrom	1 A	1 A	4 A	4 A	6 A	Jahre
Schaltspiele	769	91	192	67	96	5
	384	45	96	33	48	10
	192	23	48	17	24	20

Die Zykluszeit t_{Zyklus} ergit sich zu: t_{Zyklus} [s] = 3600 [s] / Schaltspiele

Kontaktlebensdauer ELMS1

16 Konformitätserklärung

M	IKA				tec
			EU-Konfor	mitätserkläru	A division of the
			EU Declarat	ion of Conform	nity
Dol Dol	kument N c <i>ument N</i>	r.: o.:	ADEUKX	500002.01	
Wir We	erklären i <i>declare u</i>	n alleiniger Verantwortu nder our sole responsib	ing, dass die mit bility that the CE n	CE gekennzeichneter narked products	n Produkte
Тур <i>Тур</i>	enbezeio e Design	hnungen: ations:	ELMS1-*,	F23S*, F33S*, F53S'	*, F73S* ^{(1) (2)}
Bes Des	chreibur cription:	g:	ELMS1 ÜI ELMS1 O	berlastsicherung ⁽³⁾ verload protection s	ystem
gen acc inst	näß gültig ording to i ructions:	er Betriebsanleitung: he valid operating	ADPR1X7	14032	
die con	wesentlic	nen Schutzanforderung he essential protection	en der folgenden requirements of th	Richtlinien erfüllen: ne directives:	Harmonisierte Normen: Harmonized standards:
20	11/65/EU	Gefährliche Stoffe (RoHS Hazardous substances (8) RoHS)		EN 50581:2012
20	14/30/EU	Elektromagnetische Ver Electromagnetic Compa	träglichkeit (EMV) tibility (EMC)		EN 61326-1:2013-07 EN 61326-3-1:2015-06 EN 61326-1-1:2008-11 EN 55011:2009+A1:2010 (class
20	06/42/EG	Maschinenrichtlinie Machinery Directive ⁽⁴⁾			DIN EN ISO 13849-1:2016-06 DIN EN ISO 13849-2:2013-02 DIN EN 60947-5-1:2015-05
(1)	Übersicht un Overview an	d Details zu den Typen siehe Anhai d details of the types see attacheme	ng auf Seite 2 ant on page 2		
(2)	* = mehrere * = <i>mutiple a</i>	alphanumerische Zeichen; Iphanumeric letter			
(3)	ELMS1 Über ELMS1 Over	lastsicherung bestehend aus Siche load protection system consist of se	rheitssteuerung ELMS1-* u afety control system ELMS	und Sicherheits-Kraftsensoren F 1-* and safety force transducer F	33S* , F33S*, F53S* oder F73S* 33S*, F33S*, F53S* or F73S*
(4)	EG-Baumusi und Maschin EU type-exa und Maschin	erprüfbescheinigung HSM 19012; D en Kenn-Nummer. 0393 mination certificate HSM 19012; DG en Kenn-Nummer: 0393	OGUV Test Prüf- und Zertif SUV Test Prüf- und Zertifizi	izierungsstelle Hebezeuge, Sich ierungsstelle Hebezeuge, Sicher	erheitskomponenten heitskomponenten
	Unterzeichne tecsis Gm	t für und im Namen von / <i>Signe</i> I bH	ed for and on behalf of		
	Stefan Ric	ther, Managing Director		Ralf Both, Engineer	ing Manager
Ca 63	dis-GmbH rl-Legion-Str. 40 073 Öffenbach ar	- 44 n Main	Tel. +49 69 5805-0 Fax +49 69 5805-7788 E-Mail info@tecsis.de	V	Sitz Offenbach - Offenbach am Main Registernummer: HR B 40169 Joschäftsführer: Stefen Richter u. Thomas Steinbachar
00			www.tecsis.de		

٦

Anhang z Annex to	ur EU-Konfori EU-Declaratio	mitätserklärung on of conformity	
tecsis Typ	BestNr.		Beschreibung Description
ELMS1-ZMV	ELMS1X000001	Zentralmodul 8 Eingänge Central module 8 inputs	
ELMS1-ZMVK	ELMS1X000002	Zentralmodul 8 Eingänge mit zu: Central module 8 inputs with add	ätzlichen Kontaktausgängen litional contact outputs
ELMS1-ZMV	ELMS1X000003	Zentralmodul 6 Eingänge, 2 Ana Central module 6 inputs, 2 analo	logausgänge que outputs
ELMS1-ZMVK	ELMS1X000004	Zentralmodul 6 Eingänge, 2 Ana Central module 6 inputs, 2 analo	ogausgänge und zusätzlichen Kontakt-ausgängen gue outputs and additional contact outputs
ELMS1-ZMVA	ELMS1X000005	Zentralmodul 8 Eingänge und 4 a Central module 8 inputs and 4 a	Analogausgänge halogue outputs
ELMS1-INV	ELMS1X001001	Zusätzliche Eingänge Additional inputs	
ELMS1-IOV	ELMS1X001002	Zusätzliche Ein-/Ausgänge Additional inputs/outputs	
ELMS1-RMV	ELMS1X001003	Zusätzliche Kontaktausgänge Additional contact outputs	
ELMS1-DPV	ELMS1X001004	Feldbus Profibus DP Fieldbus Profibus DP	
ELMS1-ECV	ELMS1X001005	Feldbus EhterCat Fieldbus EhterCat	
ELMS1-COV	ELMS1X001006	Feldbus CANopen Fieldbus CANopen	
ELMS1-PNV	ELMS1X001008	Feldbus Profinet Fieldbus Profinet	
tecsis Typ tecsis Type	Best -Nr. Order. No.		Beschreibung Description
F235*	F23SXXXXXXXX	Zug/Druckkraftaufnehmer tension/compression load cell	
F33S*	F33SXXXXXXXX	Scherstab mit integriertem Verst Shear beam with integrated amp	irker lífier
F53S*	F53SXXXXXXXX	Heavy Duty Messachsen Heavy Duty Load pins	
F73S*	F73SXXXXXXXX	Zugmesslasche Tension link	

Г

17 Systemübersicht – Blockschaltbild

ELMS1 Überlastsicherung

Fig. 46 Blockschaltbild: ELMS1 Überlastsicherung

Checkliste Inbetriebnahme ELMS1 Überlastsicherung

Voraussetzung für die Inbetriebnahme:

- Montage und Installation müssen durch Elektrofachkräfte oder elektrotechnisch unterwiesene Personen durchgeführt worden sein
- Anschlüsse, Leitungen und alle für die Inbetriebnahme nötigen Anlagenteile sind fertig montiert, angeschlossen und betriebsbereit
- Alle f
 ür die Anwendung ben
 ötigten Einstelldaten, Parameter, etc. liegen vor
- Die Anlage ist mechanisch und elektrisch fertig angeschlossen
- Die vor Ort geltenden Arbeitsschutz- und Elektroanschlussbestimmungen sind eingehalten
- Prüfgewichte für die Justage und Systemvalidierung müssen Vorort sein

Checkliste der benötigten Komponenten:

- PC oder Laptop
- ELMS1 Steuerung
- Programmiersoftware ELMS1 Designer
- Betriebsanleitung, Verdrahtungsplan, Parameterliste, Feldbuskonfiguration (optional)
- Mini USB-Kabel
- 24VDC-Versorgung

Checkliste der Inbetriebnahme:

Nachfolgende Schritte sind zur Inbetriebnahme der ELMS1 Überlastsicherung erforderlich

- ELMS1 Designer in der aktuell gültigen Version auf PC/Laptop installieren
- ELMS1 Steuerung über Mini USB Kabel mit dem PC/Laptop verbinden
- ELMS1 Steuerung einschalten
- ELMS1 Designer Software starten und die Applikationsdatei öffnen
- Online Diagnose starten und pr
 üfen ob das System fehlerfrei arbeitet
- Automatische Justierung gemäß Betriebsanleitung durchführen
- Parametrierung der Analogeingänge und der Schaltschwellen vornehmen
- Übertragung der Applikationsdaten
- Projekt- und Systemvalidierung gemäß Betriebsanleitung durchführen
- Applikationsdatei mit den neu erstellten Parameter unter einen eindeutigen Namen speichern
- Durchgeführten Vorgang in die nachstehende Liste dokumentieren
- Überprüfung der Sicherheitsfunktion "Überlast" gemäß Kap. 8 dieser Betriebsanleitung durchführen

Parameter Bezeichnung	Alter W	/ert	Neuer Wert
Lastwerte i.O.	□Ja	□Nein	
Überlast ausgelöst	□Ja	□Nein	

Name Applikationsdatei

Bemerkungen _____

Name

Datum

Unterschrift

Beschreibung der Produkttypen

tecsis Typ	Best. Nr.	Art. Name
ELMS1-ZMV	ELMS1X000001	Zentralmodul 8 Eingänge
ELMS1-ZMVK	ELMS1X000002	Zentralmodul 8 Eingänge mit zusätzli- chen Kontaktausgängen
ELMS1-ZMV	ELMS1X000003	Zentralmodul 6 Eingänge, 2 Analogaus- gänge
ELMS1-ZMVK	ELMS1X000004	Zentralmodul 6 Eingänge, 2 Analogaus- gänge und zusätzlichen Kontaktausgän- gen
ELMS1-ZMVA	ELMS1X000005	Zentralmodul 8 Eingänge und 4 Ana- logausgänge
ELMS1-INV	ELMS1X001001	Zusätzliche Eingänge
ELMS1-IOV	ELMS1X001002	Zusätzliche Ein-/Ausgänge
ELMS1-RMV	ELMS1X001003	Zusätzliche Kontaktausgänge
ELMS1-DPV	ELMS1X001004	Feldbus Profibus DP
ELMS1-ECV	ELMS1X001005	Feldbus EhterCat
ELMS1-COV	ELMS1X001006	Feldbus CANopen
ELMS1-PNV	ELMS1X001008	Feldbus Profinet