User manual IM2

Alternating voltage / Alternating current signal rms-value (TRMS)

0-50 VAC, 0-10 VAC, 0-1 AAC, 0-5 AAC

Technical features:

- red display of -19999... 99999 Digits (optional: green, orange, blue)
- installation depth: 70 mm without plug-in terminal
- min/max-memory
- 30 adjustable supporting points
- display flashing at threshold value exceedance / undercut
- digital input for triggering of Hold, Tara
- permanent min/max value recording
- volume metering (totaliser)
- mathematical functions like reciprocal value, square roots, squaring or rounding
- setpoint generator
- sliding averaging
- brightness control
- programming interlock via access code
- protection class IP65 at the front
- pluggable screw terminal
- optional galvanic insulated digital input or analog output
- optional 2 relay outputs
- accessories: PC-based configuration kit PM-TOOL incl. CD and USB-adapter for devices without keypad and for a simple adjustment of standard devices

Identification

STANDARD-TYPES
AC current, AC voltage
Housing size: $96 \times 48 \mathrm{~mm}$

ORDER NUMBER
IM2-1VR5B.0004.570xD
IM2-1VR5B.0004.670xD

Options - breakdown of order code:

Please state physical unit by order, e.g. A.

Contents

1. Brief description 1
2. Assembly 2
3. Electrical connection 3
4. Description of function and operation 4
4.1. Programming software PM-TOOL 5
5. Setting up the device 6
5.1. Switching on 6
5.2. Standard parameterisation (flat operation level) 6
Value assignment for the triggering of the signal input
5.3. Programming interlock RUM 9
Activation/Deactivation of the programming interlock or change into professional or flat operation level
5.4. Extended parametersation (professional operation level) 10
5.4.1. Signal input parameters INP 10
Value assignment for the triggering of the signal input incl. linearisation
5.4.2. General device parameters FCT 13
Superior device functions like Hold, Tara, min/max permanent, setpoint value function / nominal value function, averaging, brightness control, suppression of negative offsets, as well as the control of the digital input and keyboard layout
5.4.3. Safety parameters $C O D$ 19
Assignment of user and master code to lock or to receive access to defined parameter such as analog output and alarms, etc.
5.4.4. Analog parameters OUT 20
Analog output functions
5.4.5. Relay functions REL 22
Parameter for setpoint definition
5.4.6. Alarm parameters RLI...RLY 25
Actuator and dependencies of the alarms
5.4.7. Totaliser (Volume metering) TOT 27
Parameter for calculation of the sum function
6. Reset to factory settings 28
Reset parameters onto the delivery state
7. Alarms / Relays 29
Functional principle of the switching outputs
8. Sensor aligment 31Diagram of functional sequences for sensors with existing adjustable resistor
9. Technical data 32
10. Safety advices 34
11. Error elimination 35

1. Brief description

The panel meter instrument IM2-14 is a 5-digit device for AC current / AC voltage signals (TRMS) and a visual threshold value monitoring via the display. The configuration happens via four keys at the front or by the optional PC software PM-TOOL. The integrated programming interlock prevents unrequested changes of parameters and can be unlocked again with an individual code. Optional the following functions are available: a digital input for triggering of Hold (Tara), aswell as one analog output for further evaluating in the unit.
With help of the galvanic isolated setpoints (optional), free adjustable limit values can be controlled and reported to a superior master display.
The electrical connection is done via plug-in terminals on the back side.
Selectable functions like e.g. the recall of the min/max-value, an averaging of the measuring signals, a nominal presetting or setpoint presetting, a direct threshold value regulation during operation mode and further measuring setpoints for linearisation, complete the modern device concept.

2. Assembly

Please read the Safety advices on page 34 before installation and keep this user manual for future reference.

1. After removing the fixing elements, insert the device.
2. Check the seal to make sure it fits securely.
3. Click the fixing elements back into place and tighten the clamping screws by hand. Then use a screwdriver to tighten them another half a turn.

CAUTION! The torque should not exceed 0.1 Nm !

The dimension symbols can be exchanged before installation via a channel on the side!

3. Electrical connection

Type IM2-1VR5B.0004.470xD supply of 115 VAC
Type IM2-1VR5B.0004.570xD supply of 230 VAC
Type IM2-1VR5B.0004.670xD supply of 10-30 VDC

Relay option

IM2 with digital input and external voltage supply source

4. Description of function and operation

Operation

The operation is divided into three different levels.
Menu level (delivery status)
This level is designed for the standard settings of the device. Only menu items which are sufficent to set the device into operation are displayed. To get into the professional level, run through the menu level and parameterise PROF under menu item RUM.

Menu group level (complete function volume)
Suited for complex applications as e.g. linkage of alarms, setpoint treatment, totaliser function etc.. In this level function groups which allow an extended parameterisation of the standard settings are availabe. To leave the menu group level, run through this level and parameterise ULOC under menu item RUM.

Parameterisation level:

Parameters deposited in the menu item can here be parameterised. Functions that can be changed or adjusted, are always signalised by a flashing of the display. Settings that are made in the parameterisation level are confirmed with $[\mathrm{P}]$ and thus saved. By pressing the [O]-key (,zero-key") it leads to a break-off of the value input and to a change into the menu level. All adjustments are saved automatically by the device and changes into operating mode, if no further key operation is done within the next 10 seconds.

Level	Key	Description
Menu level	P	Change to parameterisation level and deposited values.
	-	Keys for up and down navigation in the menu level.
	0	Change into operation mode.
Parameterisation level	P	Confirms the changes made at the parameterisation level.
	-	Adjustment of the value / the setting.
	0	Change into menu level or break-off in value input.
Menu group level	P	Change to menu level.
	- ∇	Keys for up and down navigation in the menu group level.
	0	Change into operation mode or back into menu level.

Function chart:

Underline:

(P) Takeover

O Stop

- Value selection (+)

Value selection (-)

4.1 Parameterisation software PM-TOOL:

Part of the PM-TOOL are the software on CD and an USB-cable with device adapter. The connection happens via a 4-pole micromatch-plug on the back side of the device, to the PC-side the connection happens via an USB plug.

System requirements: PC incl. USB interface
Software: Windows XP, Windows VISTA
With this tool the device configuration can be generated, omitted and saved on the PC. The parameters can be changed via the easy to handle program surface, whereat the operating mode and the possible selection options can be preset by the program.

5. Setting up the device

5.1. Switching on

Once the installation is complete, start the device by applying the voltage supply. Before, check once again that all electrical connections are correct.

Starting sequence

For 1 second during the switching-on process, the segment test ($\begin{aligned} & 8 \\ & 8\end{aligned} 888$) is displayed followed by an indication of the software type and, after that, also for 1 second the software version. After the starting sequence, the device switches to operation/display mode.
5.2. Standard parameterisation: (Flat operation level)

To parameterise the display, press the [P]-key in operating mode for 1 second. The display then changes to the menu level with the first menu item TYPE.

Menu level Parameterisation level

Selection of the input signal, TYPE:

Default: 5E.50U

Available as measuring input options are 0-50 VAC/0-10 VAC or 0-5 AAC/0-1 AAC signals as works calibration (without application of the sensor signal) and 5E.50V. SE.1OV. SE.SR and SE.1R as sensor calibration (with the sensor applied). Select with [$\mathbf{\Delta}$] [\mathbf{V}] and confirm the selection with [P].

Setting the end value of the measuring range, EMD:

Default: 10000

Set the end value from the smallest to the highest digit with [\mathbf{A}] [$\mathbf{\nabla}$] and confirm each digit with [P]. A minus sign can only be parameterized on the highest value digit. After the last digit, the display switches back to the menu level. If SEMS was selected as input option, one can only select between MOCR and CRL. With MOCR, only the previously set display value is taken over, and with CRL, the device takes over both the display value and the analogue input value.

Enter the start/offset value from the smallest to the highest digit with [\mathbf{A}] [\mathbf{V}] and confirm each digit with [P]. After the last digit the display switches back to the menu level. If SEMS was selected as input option, one can only select between MOCA and CRL. With MOCR, only the previously set display value is taken over, and with CRL, the device takes over both the display value and the analogue input value.

Setting the decimal point, $D O T$:
Default: 0

The decimal point on the display can be moved with [\mathbf{A}] [$\mathbf{\nabla}$] and confirmed with [P]. The display then switches back to the menu level again.

Setting up the display time, $5 E C$:
Default: 1.0

The display time is set with [\mathbf{A}] [\mathbf{V}]. The display moves up in increments of 0.1 up to 1 second and in increments of 1.0 up to 10.0 seconds. Confirm the selection by pressing the [P] button. The display then switches back to the menu level again.
Selection of analog output, OUT.RR:
Default: 4-20

Three output signals are available: $0-10 \mathrm{VDC}, 0-20 \mathrm{~mA}$ and $4-20 \mathrm{~mA}$, with this function, the demanded signal is selected.
Setting up the final value of the analog output, OUT.EM:
Default: 10000

The final value is adjusted from the smallest digit to the highest digit with [\mathbf{A}] [\mathbf{V}] and digit by digit confirmed with [P]. A minus sign can only be parameterised on the highest digit. After the last digit, the device changes back into menu level.

Menu level Parameterisation level
User code (4-digit number-combination, free available), U.CODE:
Default: 0000
 selected before under menu item RUM. By pressing [P] for 3 seconds in operation mode, the display shows COOE. The U.CODE needs to be entered to get to the reduced number of parameter sets. The code has to be entered before each parameterisation, until the R.CODE (Master code) unlocks all parameters again.

Master code (4-digit number-combination, free available), R.CODE:

Default: 1234

All parameters can be unlocked with this code, after LOC has been activated under menu item RUM. By pressing [P] for 3 seconds in operation mode, the display shows CODE and enables the user to reach all parameters by entering the R.CODE. Under RUM the parameterisation can be activated permanently by selecting ULOC or PROF, thus at an anew pushing of $[P]$ in operation mode, the code needs not to be entered again.
5.3. Programming interlock RUM

Activation / deactivation of the programming lock or completion of the standard parameterisation with change into menu group level (complete function range), RUM:
Default: ULOC

With the navigation keys [$\mathbf{\Delta}$] [\mathbf{V}], choose between the deactivated key lock ULOC (works setting) and the activated key lock LOC, or the change into the menu group level PROF. Confirm the selection with [P]. After this, the display confirms the settings with "-...-" and automatically switches to operating mode. If LOC was selected, the keyboard is locked. To get back into the menu level, press [P] for 3 seconds in operating mode. Now enter the CODE (works setting 1234) that appears using [$\mathbf{\Delta}$] [$\mathbf{\nabla}$] plus [P] to unlock the keyboard. FRIL appears if the input is wrong. To parameterise further functions PROF needs to be set. The device confirms this setting with ,"---,, and changes automatically in operation mode. By pressing [P] for approx. 3 seconds in operation mode, the first menu group INP is shown in the display and thus confirms the change into the extended parameterisation. It stays activated as long as ULOC or LOC is entered in menu group RUM.
5.4. Extended parameterisation (Professional operation level)

5.4.1. Signal input parameters

Menu group level

Menu level Parametrisation level

Selection of the input signal, TYPE:
Default: 5E.50U

Available as measuring input options are 0-50 VAC/0-10 VAC or 0-5 AAC/0-1 AAC signals as works calibration (without application of the sensor signal) and 5 E.50V. SE.1OV. SE. 58 and SE.1R as sensor calibration (with the sensor applied). Select with [$\mathbf{\Delta}$] [\mathbf{V}] and confirm the selection with [P].

Setting the end value of the measuring range, $E M D$:
Default: 10000

Set the end value from the smallest to the highest digit with [\mathbf{A}] [\mathbf{V}] and confirm each digit with [P]. A minus sign can only be parameterized on the highest value digit. After the last digit, the display switches back to the menu level. If SEMS was selected as input option, one can only select between MOCR and CRL. With MOCR, only the previously set display value is taken over, and with CRL, the device takes over both the display value and the analogue input value.
Setting up the start/offset value of the measuring range, offS:
Default: 0

Enter the start/offset value from the smallest to the highest digit with [\mathbf{A}] [\mathbf{V}] and confirm each digit with [P]. After the last digit the display switches back to the menu level. If SEMS was selected as input option, one can only select between MOCA and CRL. With MOCR, only the previously set display value is taken over, and with CRL, the device takes over both the display value and the analogue input value.

Menu level	Parameterisation level Setting the decimal point, 00 : Default: 0

Setting up the display time, $5 E C$:

Default: 1.0

Rescaling the measuring input values, EMDA:
Default: 10000

Rescaling the measuring input values, OFFR:
Default: 0

With this function, rescale the input value of e.g. 0.1 AAC (works setting) without applying a measuring signal. If sensor calibration has been selected, these parameters are not available.

Setting up the tare/offset value, TRRR:
Default: 0

The given value is added to the linearized value. In this way, the characteristic line can be shifted by the selected amount.

Menu level	Parameterisation level
Setting up the balance point, RDJ.PT:	
Default: 08000	

Setting up the physical unit, UNIT:

Default: MO

One can choose between the above shown physical units. It will be displayed on the 5th digit of the display.

Number of additional setpoints, SPCT:
Default: 00

30 additional setpoints can be defined to the initial value and final value, so linear sensor values are not linearised. Only activated setpoint parameters are displayed.
Display values for setpoints, $D / 5.01$... $D / 5.30$:

Under this parameter setpoints are defined according to their value. At the sensor calibration, like at final value / offset, one is asked at the end if a calibration shall be activated.
Analog values for setpoints, IMP. 01 ... IMP. 30 :

The setpoints are always preset according to the selected input signal A/V. The desired analog values can freely be parameterised in ascending order.

Menu level Parameterisation level

Device undercut, DI.UMD:
Default: -19999

With this function the device undercut (_ _ _ _ _) can be defined on a definite value.
Display overflow, DI.OUE:
Default: 99999

With this function the display overflow (-----) can be defined on a definite value.

Back to menu group level, RET:

With [P] the selection is confirmed and the device changes into menu group level ..IMP-".

5.4.2. General device parameters

Menu group level

Menu level Parameterisation level

Display time, DISEC:
Default: 01.0

The display is set up with [©] [$\mathbf{\nabla}$]. Thereby it switches up to 1 second in increments of 0.1 seconds and up to 10.0 seconds in increments of 1.0. With [P] the selection is confirmed and the device changes into menu level.

Menu level	Parameterisation level
	Rounding of display values, ROUMD: Default: 00001
rauna	
$\mid \nabla \Delta$	This function is for instable display values, where the display value is changed in increments of $1,5,10$ or 50 . This does not affect the resolution of the optional outputs. With [P] the selection is confirmed and the device changes into menu level.

Arithmetic, RRITH:

Default: NO

With this function the calculated value, not the measuring value, is shown in the display. Calculation types:
rEZIP $=($ Final value*Final value $) /$ Display value
rAdiC $=$ Root(Display value*Final value)
SqUAr $=(\text { Display value })^{2} /$ Final value
Advice: The denominator of fractions should not be 0 because a division by 0 is not possible. It creates an undefined state and the display goes into the overflow. With MO, no calculation is deposited. With [P] the selection is confirmed and the device changes into menu level.

Sliding average determination, RVG:

Default: 1.0

Here, the number of the meterings that need to be averaged is preset. The time of averaging results of the product of measuring time SEC and the averaged metering RVG. With the selection of RVG in the menu level DISPL, the result will be shown in the display and evaluated via the alarms.

Zero point slowdown, ZERO:
Default: 00

At the zero point slowdown, a value range around the zero point can be preset, so the display shows a zero. If e.g. 10 is set, the display would show a zero in the value range from -10 to +10 ; below continue with -11 and beyond with +11 . The maximum adjustable range of value is 99 .
Menu level Parameterisation level

Suppression of negative Offsets, M.OFFS:
Default: OM

This function can be used to suppress negative display values. ON: the function is active and all measured values below OFFS (measurand of initial value) are ignored, OFF is selected and negative numerical values are displayed, all measured values are linearized. With [P] the selection is confirmed and the display changes to the menu level.

Definite contstant value, COMST:
Default: 0

$$
G^{\mathrm{P}} \mathrm{~B}^{\mathrm{P}} \mathrm{~B}^{\mathrm{P}} \mathrm{~B}^{\mathrm{P}} \mathrm{~B}_{\mathrm{D}}^{\mathrm{P}}
$$

The constant value can be evaluated via the alarms or via the analog output, like the current measurand. The decimal place cannot be changed for this value and is taken over by the current measurand. Like this a setpoint generator can be realised via the analog output by this value. Furthermore it can be used for calculating the difference. At this the constant value is substracted from the current measurand and the difference is evaluated in the alerting or by the analog output. Thus regulations can be displayed quite easily.

Minimum constant value, CON.M:
Default: -19999

The minimum constant value is adjusted from the smallest to the highest digit with the navigation keys [$\mathbf{\Delta}$] [\mathbf{V}] and confirmed digit per digit with [P]. A minus sign can only be adjusted on the highest digit. After the last digit the display changes back into menu level.

Maximum constant value, CON.MR:
Default: 99999

The maximum constant value is adjusted from the smallest to the highest digit with the navigation keys [$\mathbf{\Delta}$] [\mathbf{V}] and confirmed digit per digit with [P]. A minus sign can only be adjusted on the highest digit. After the last digit the display changes back into menu level.

Display, DISPL:
Default: RCTUR

With this function the current measuring value, min/max value, totaliser value or the process-controlled hold-value can be allocated to the display. With [P] the selection is confirmed and the device changes into menu level.

Brightness control, LIGHT:
Default: 10

The brightness of the display can be adjusted in 16 levels from $00=$ very dark to $15=$ very bright via this parameter or alternatively via the navigation keys from the outside. During the start of the device the level that is deposited under this parameter will always be used, even though the brightness has been changed via the navigation keys in the meantime.

Display flashing, FLRSH:
Default: MO

$$
\begin{aligned}
& \text { FLR5H P प na } \frac{\Delta}{\nabla} \text { RL-i } \frac{\Delta}{\nabla} \text { RL-ट } \frac{\Delta}{\nabla} \text { RL.IC } \frac{\Delta}{\nabla} \\
& \text { Tral }
\end{aligned}
$$

A display flashing can be added as additional alarm function either to single or to a combination of off-limit condition. With $M O$, no flashing is allocated.

Menu level Parameterisation level

Assignment (deposit) of key functions, TRST:

Default: MO

For the operation mode, special functions can be deposited on the navigation keys [$\boldsymbol{\Delta}$] [$\mathbf{\nabla}$], in particular this function is made for devices in housing size $48 \times 24 \mathrm{~mm}$ which do not have a 4th key ([O]-key). If the min/max-memory is activated with EHTR, all measured min/max-values are saved during operation and can be recalled via the navigation keys. The values get lost by restart of the device. If the threshold value correction 41.12 or 4.34 is choosen, the values of the threshold can be changed during operation without disturbing the operating procedure. With TRRA the device is tared to zero and saved permanently as offset. The device confirms the correct taring by showing 00000 in the display. SET.TR switches into the offset value and can be changed via the navigation keys [$\mathbf{\Delta}$] [\mathbf{V}]. Via TOTRL the current value of the totaliser can be displayed, after this the device changes back on the parameterised display value. If TOT.RE was deposited, the totaliser can be set back by pressing the navigation keys [$\mathbf{\Delta}$] [$\mathbf{\nabla}$], the device acknowledges this with showing 00000 in the display. The configuration of EHT.RE deletes the min/maxmemory. Under RCTUR the measurand is shown, after this the display returns to the parameterised display value. If RBS.UR (absolute value) was selected, the display shows the value that has been measured since voltage connection, without
 values can be addressed via the navigation keys; they can be changed digit per digit or taken over by pushing the [P]-key. The adjustment is taken over directly, an excisting limit value monitoring and the current measurement will not be influenced by this. If $N O$ is selected, the navigation keys are without any function in the operation mode.

Abstract

\section*{Menu level Parameterisation level}

Special function [O]-key, TRST.4: Default: MO

For the operation mode, special functions can be deposited on the [O]-key. Activate this function by pressing the key. With TRRA the device is set temporarily on a parameterised value. The device acknowledges the correct taring with showing 00000 in the display. SET.TR adds a defined value on to the currently displayed value. Via TOTRL the current value of the totaliser can be displayed for approx. 7 seconds, after this the device switches back on the parameterised display value. If TOT.RE was deposited, the totaliser can be set back by pressing the navigation keys [$\mathbf{\Delta}$][\mathbf{V}], the device acknowledges this with showing 00000 in the display. EHT.RE deletes the min/max-memory. If HOLD has been selected, the moment can be hold constant by pressing the [O]-key, and is updated by releasing the key. Advice: HOLD is activated only, if HOLD was selected under parameter DISPL. RCTUR shows the measuring value for approx. 7 seconds, after that the device switches back on the parameterised display value. The same goes for $R V G$, here the sliding average values will be displayed. A sensor calibration is done by triggering the digital input via SE.CRL, the flow diagram is shown in Chapter 9. The constant value COMST can be recalled via the digital input, or changed digit per digit. At RL-1...RL-4 an output can be set and therewith e.g. a setpoint adjustment can be done. If $M O$ is selected, the [O]-key is without any function in the operation mode.

Special function digital input, DIG.II:
Default: MO

In operation mode, the above shown parameter can be laid on the optional digital input, too. Function description see TAST.4.

Menu level Parameterisation level

Back to menu group level, RET:

With [P] the selection is confirmed and the device changes into menu group level .-FCT-".

5.4.3. Safety parameters

Menu group level

Menu level Parameterisation level

User code U.CODE:

Default: 0000

Via this code reduced sets of parameters can be set free. A change of the U.CODE can be done via the correct input of the R.CODE (master code).
Master code, R.CODE:
Default: 1234

By entering R.CODE the device will be unlocked and all parameters are released.
Release/lock analog output parameter, OUT.LE:
Default: RLL

Analog output parameter can be locked or released for the user:

- EN-OF: the initial or final value can be changed in operation mode.
- OUT.EO: output signal can be changed from e.g. 0-20 mA to 4-20 mA or 0-10 VDC.
- RLL: analog output parameters are released.
- MO: all analog output parameters are locked.

5.4.4. Analog output parameters

Menu group level

Menu level Parametrisation level

Selection reference of analog output, OUTPT:
Default: RCTUR

The analog output signal can refer to different functions, in detail these are the current measurand, the min/max-value, the totaliser function / sum function, the constant value or the difference between current measurand and constant value. If HOLD was selected, the signal of the analog output will be kept. It can be continued processing after a deactivation of $H O L D$. With [P] the selection is confirmed and the device changes into menu level.

Menu level	Parameterisation level
	Selection analog output, out.RR: Default: 4-20
Out.r ${ }^{\text {B }}$	
$\mid \nabla \Delta$	Three output signals are available: $0-10$ VDC, $0-20 \mathrm{~mA}$ and $4-20 \mathrm{~mA}$. Select the desired signal with this function.

Setting the final value of the analog output, OUT.EM:
Default: 10000

The final value is adjusted from the smallest to the highest digit with [\mathbf{A}] [\mathbf{V}] and confirmed digit per digit with [P]. A minus sign can only be parameterised on the highest digit. After the last digit the device changes back into menu level.

Setting the initial value of the analog output, OUT.OF:
 Default: 00000

The initial value is adjusted from the smallest to the highest digit with [\mathbf{A}] [\mathbf{V}] and confirmed digit per digit with [P]. A minus sign can only be parameterised on the highest digit. After the last digit the device changes back into menu level.

Overflow behaviour, O.FLOU:
Default: EDGE

To recognise and evaluate faulty signals, e.g. by a controller, the overflow behaviour of the analog output can be defined. As overflow can be seen either EDGE, that means the analog output runs on the set limits e.g. 4 and 20 mA, TO.OFF (input value smaller than initial value, analog output switches on e.g. 4 mA) or TO.EMD (higher than final value, analog output switches on e.g. 20 mA). If TO.RIM or TO.MRX is set, the analog output switches on the smallest or highest possible binary value. This means that values of e.g. $0 \mathrm{~mA}, 0 \mathrm{VDC}$ or values higher than 20 mA or 10 VDC can be reached. With [P] the selection is confirmed and the device changes into menu level.

Back to menu group level, RET:

With [P] the selection is confirmed and the device changes into menu group level .-OUT-".

5.4.5. Relay functions

Menu group level

Menu level Parametrisation level
Alarm relay 1, REL-7:
The same applies for relays 2-4
Default: RL-1

Each setpoint (optional) can be linked up via 4 alarms (by default). This can either be inserted at activated alarms RLI/Y or deactivated alarms RLMI/Y. If LOGIC was selected, logical links are available in the menu levels LOG-1 and COM-1. Access to these two menu levels is via LOGIC, at all other selected functions, these two parameters are overleaped. Via OM/OFF the setpoints can be activated/deactivated, in this case the output and the setpoint display are set/not set on the front of the device. The parameters CRL, LRL.OF and CRL.EM can only be used in accordance with the semi-automatic calibration (Chapter 9. Sensor alignment). At CRL the relay switches during sensor calibration, at CRL.OF during offset calibration and at CRL.EM during the calibration of the final value. With $[P]$ the selection is confirmed and the device changes into menu level.

Menu level	Parameterisation level		
Logic relay 1，LOG－1： Default：OR			
$\begin{aligned} & L a E-i \\ & \boxed{\Delta}] \end{aligned}$	Here，the switching behaviour of the relay is defined via a logic link，the following schema describes these functions with inclusion of $R L-1$ and RL－2．This parameter can only be selected if LOGIC was selected under REL－I．		
	$\square \Gamma$	A1 v A2	As soon as a selected alarm is activated，the relay operates．Equates to operating current principle．
	$\boldsymbol{\square a r}$	$\overline{A 1 \vee A} 2=\overline{A 1} \wedge \overline{A 2}$	The relay operates only，if no selected alarm is active．Equates to quiescent current principle．
	日пd	$\mathrm{A} 1 \wedge \mathrm{a} 2$	The relay operates only，if all selected alarms are active．
	の日п』	$\overline{A 1 \wedge A} 2=\overline{A 1} \vee \overline{A 2}$	As soon as a selected alarm is not activated， the relay operates．
	With［P］the selection is confirmed and the device changes into menu level．		
$\begin{aligned} & \text { La } \boldsymbol{F}-1 \\ & \sqrt{\Delta} \mid \end{aligned}$	Alarms for relay 1，com－l： Default： 8.1		
	The allocation of the alarms to relay 1 happens via this parameter，one alarm or a group of alarms can be chosen．This parameter can only be selected if LOGIC was selected under REL－I．With［P］the selection is confirmed and the device changes into menu level．		

Abstract

Each setpoint (optional) can be linked up via 4 alarms (by default). This can either be inserted at activated alarms RLI/ or deactivated alarms RLMITY. If LOGIC was selected, logical links are available in the menu level LOG-1 and COO-1. Access to these two menu levels is via LOGIC, at all other selected functions, these two parameters are overleaped. Via OM/OFF the setpoints can be activated/deactivated, in this case the output and the setpoint display are set/not set on the front of the device. The parameters CRL, CAL.OF and CRL.EM can only be used in accordance with the semi-automatic calibration (Chapter 8. Sensor alignment). At CAL the relay switches during sensor calibration, at CRL.OF during offset calibration and at CRL.EM during the calibration of the final value. With [P] the selection is confirmed and the device changes into menu level.

Logic relay 2, LOG-2:
Default: $O R$

Here, the switching behavior of the relay is defined via a logic link, the following schema describes these functions with inclusion of RL-I and RL-z: This parameter can only be selected if LOGIC was selected under REL-I.

ar	A1 v A2	As soon as a selected alarm is activated, the relay operates. Equates to operating current principle.
nar	$\overline{A 1 \vee A} 2=A \overline{1} \wedge \overline{A 2}$	The relay operates only, if no selected alarm is active. Equates to quiescent current principle.
Find	$\mathrm{A} 1 \wedge \mathrm{a} 2$	The relay operates only, if all selected alarms are active.
nRnd	$\overline{A 1 \wedge A} 2=\overline{A 1} \vee \overline{A 2}$	As soon as a selected alarm is not activated, the relay operates.

With [P] the selection is confirmed and the device changes into menu level.

Menu level Parameterisation level

Alarms for relay 2, com-z:
Default: 8.2

The allocation of the alarms to relay 2 happens via this parameter, one alarm or a group of alarms can be chosen. This parameter can only be selected if LOGIC was selected under REL-2. With [P] the selection is confirmed and the device changes into menu level.

Back to menu group level, RET:

With [P] the selection is confirmed and the device changes into menu group level .,-REL-".

5.4.6. Alarm parameters

Menu group level

Menu level Parameterisation level
Depedency of alarm 1, RLRM. 1 :
Default: RCTUR

The dependency of alarm. 1 can be related to special functions, in detail these are the current measurand, the min/max-value, the totaliser value/sum value, the sliding average value, the constant value or the difference between current measurand and constant value. If HOLD was selected the alarm is hold and processed just after deactivation of HOLD. EHTER causes the dependency either by pressing the [O]-key or by an external signal via the digital input. With [P] the selection is confirmed and the device changes into menu level.
Example: By using the maximum value RLRRM. $1=$ mRX. $V R$ in combination with a threshold monitoring $F U-1=H / G H$, an alarm confirmation can be realised. Use the navigation keys or the 4th key for confirmation.

Menu level Parameterisation level
 Threshold values / limit values, $\mathrm{L} 1-1$:
 Default: 2000

The limit value defines the threshold, that activates/deactivates an alarm.

Hysteresis for threshold values, 4 H - t :

Default: 00000

$\square P \square \square \square \square \square \square \square \square \square$
The delayed reaction of the alarm is the difference to the threshold value, which is defined by the hysteresis.

Function for threshold value undercut /exceedance, $F U-1$:
Default: HIGH

A limit value undercut is selected with LOUU (for LOW = lower limit value), a limit value exceedance with HIGH (for HIGH = higher limit value). If e.g. limit value 1 is on a threshold level of 100 and allocated with function H HH, an alarm is activated by reaching of the threshold level. If the threshold value was allocated to LOW, an alarm will be activated by undercutting the threshold value, as long as the hysteresis is zero.

Switching-on delay, TON-7:

Default: 000

For limit value 1 one can preset a delayed switching-on of 0-100 seconds.

Switching-off delay, TOF-1:

Default: 000

For limit value 1 one can preset a delayed switching-off of 0-100 seconds.

Back to menu group level, RET:

With [P] the selection is confirmed and the device changes into menu group level .,-RLI-".

5.4.7. Totaliser (Volume metering)

Menu group level

Menu level	Parameterisation level
State of totaliser, TOTRL:	
Default: OFF	

Time base, T.BRSE:
Default: SEC

Under this parameter the time base of the measurement can be preset in seconds, minutes or hours.

Totaliser factor, FRCTO:
Default: IEO

Setting up the decimal point for the totaliser, TOT.DT:
Default: 0

The decimal point of the device can be adjusted with the navigation keys [$\mathbf{\Delta}$] [$\mathbf{\nabla}$]. With [P] the selection is confirmed and the device changes into menu level.

Menu level Parameterisation level
Totaliser reset, TOT.RE:
Default: 00000

The reset value is adjusted from the smallest to the highest digit with the navigation keys [\mathbf{A}] [\mathbf{V}] and digit per digit confirmed with [P]. After the last digit, the display switches back to the menu level. The activator for the reset is parameter driven via the $4^{\text {th }}$ key or via the optional digital input.

Back to menu group level, RET:

With [P] the selection is confirmed and the device changes into menu group level .-TOT-".

Programming interlock, run:
Menu group level

6. Reset to default values

To return the unit to a defined basic state, a reset can be carried out to the default values.

The following procedure should be used:

- Switch off the power supply
- Press [P] button
- Switch on voltage supply and press [P] button until-" is shown in the display.

With reset, the default values of the program table are loaded and used for subsequent operation. This sets the unit back to the state in which it was supplied.

Caution! All application-related data are lost.

7. Alarms / Relays

This device has 4 virtual alarms that can monitor one limit value in regard of an undercut or exceedance. Each alarm can be allocated to an optional relay output S1-S2; furthermore alarms can be controlled by events like e.g. Hold or min/max-value.

Function principle of alarms / relays	
Alarm / Relay \mathbf{x}	Deactivated, instantaneous value, min/max-value, hold-value, totaliser value, sliding average value, constant value, difference between instantaneous value and constant value or an activation via the digital input
Switching threshold	Threshold / limit value of the change-over.
Hysteresis	Broadness of the window between the switching thresholds.
Working principle	Operating current / quiescent current

Operating current

By operating current the alarm $\mathrm{S} 1-\mathrm{S} 2$ is off below the threshold and on on reaching the threshold.

Quiescent current

By quiescent current the alarm S1-S2 is on below the threshold and switched off on reaching the threshold.

Switching-on delay

The switching-on delay is activated via an alarm and e.g. switched 10 seconds after reaching the switching threshold, a short-term exceedance of the switching value does not cause an alarm, respectively does not cause a switching operation of the relay. The switching-off delay operates in the same way, keeps the alarm / the relay switched longer for the parameterised time.

8. Sensor alignment offset / final value

The device is equipped with a semi-automatic sensor calibration (SE.1OV, SE.5OV, SE.If, SE.SR). A switching output operates the trimming resistor, which exists in some sensors. An adjustment of offset and final value takes place, after which the sensor can be used directly. Depending on parameterisation, the calibration can be realized via the 4th key or via the digital input. It is possible to key during the calibration steps. So, reference signals can be connected manually. However the calibration will be interrupted after 30 seconds.

9. Technical data

Housing			
Dimensions	96x48x70 mm (BxHxD)		
	$96 \times 48 \times 89 \mathrm{~mm}(\mathrm{BxHxD})$ incl. plug-in terminal		
Panel cut-out	$92.0^{+0.8} \times 45.0^{+0.6} \mathrm{~mm}$		
Wall thickness	up to 10 mm		
Fixing	screw elements		
Material	PC polycarbonate, black, UL94V-0		
Sealing material	EPDM, 65 Shore, black		
Protection class	standard IP65 (front), IP00 (back side)		
Weight	approx. 200 g		
Connection	plug-in terminal; wire cross-section up to $2.5 \mathrm{~mm}^{2}$		
Display			
Digit height	14 mm		
Segment colour	red (optional green, orange or blue)		
Range of display	-19999 to 99999		
Setpoint	one LED per setpoint		
Overflow	horizontal bars at the top		
Underflow	horizontal bars at the bottom		
Display time	0.1 to 10.0 seconds		
Input	Ri	Measuring error	Digit
0... 1 AAC TRMS	$\sim 0.2 \Omega$	0.5 \% of final value	± 1
0...5 AAC TRMS	$\sim 0.05 \Omega$	0.5% of final value	± 1
$0 . .50$ VAC TRMS	$\sim 200 \mathrm{k} \Omega$	0.5% of final value	± 1
0... 10 VAC TRMS	$\sim 40 \mathrm{k} \Omega$	0.5 \% of final value	± 1
Digital input	$\begin{aligned} & <2.4 \mathrm{~V} \text { OFF, } 10 \mathrm{~V} \text { ON, max. } 30 \mathrm{VDC} \\ & \mathrm{R}_{1} \sim 5 \mathrm{k} \Omega \end{aligned}$		
Accuracy			
Drift of temperature	$100 \mathrm{ppm} / \mathrm{K}$		
Measuring time	$0.1 \ldots 10.0$ seconds		
Measuring principle	U/F-conversion		
Resolution	approx. 18 bit at 1 second measuring time		

Output	
Analog output	0/4-20 mA / burden 350 Ohm, 0-10 VDC / burden 10 kOhm, 16 bit
Switching outputs	
Relay with change-over contact Switching cycles	250 VAC / 2 AAC; 30 VDC / 2 ADC 0.5×10^{5} at contact load 0.5×10^{6} mechanically Division according to DIN EN 50178 / Characteristics according to DIN EN 60255
Power supply	230 VAC $\pm 10 \% 50 / 60 \mathrm{~Hz}$ (max. 10 VA) 10-30 VDC galv. isolated (max. 4 VA)
Memory	EEPROM
Data life	≥ 100 years at $25^{\circ} \mathrm{C}$
Ambient conditions	
Working temperature	0...50 ${ }^{\circ} \mathrm{C}$
Storing temperature	$-20 . . .80^{\circ} \mathrm{C}$
Weathering resistance	relative humidity $0-80 \%$ on years average without dew
EMV	EN 61326
CE-sign	Conformity according to directive 2014/30/EU
Safety standard	According to low voltage directive 2014/35/EU EN 61010; EN 60664-1

10. Safety advices

Please read the following safety advice and the assembly chapter 2 before installation and keep it for future reference.

Proper use

The IM2-14-device is designed for the evaluation and display of sensor signals.

Danger! Careless use or improper operation can result in

 personal injury and/or cause damage to the equipment.
Control of the device

The panel meters are checked before dispatch and sent out in perfect condition. Should there be any visible damage, we recommend close examination of the packaging. Please inform the supplier immediately of any damage.

Installation

The IM2-14-device must be installed by a suitably qualified specialist (e.g. with a qualification in industrial electronics).

Notes on installation

- There must be no magnetic or electric fields in the vicinity of the device, e.g. due to transformers, mobile phones or electrostatic discharge.
- The fuse rating of the supply voltage should not exceed a value of 0.5A N.B. fuse!
- Do not install inductive consumers (relays, solenoid valves etc.) near the device and suppress any interference with the aid of RC spark extinguishing combinations or freewheeling diodes.
- Keep input, output and supply lines separate from one another and do not lay them parallel with each other. Position "go" and "return lines" next to one another. Where possible use twisted pair. So, you receive best measuring results.
- Screen off and twist sensor lines. Do not lay current-carrying lines in the vicinity. Connect the screening on one side on a suitable potential equaliser (normally signal ground).
- The device is not suitable for installation in areas where there is a risk of explosion.
- Any electrical connection deviating from the connection diagram can endanger human life and/or can destroy the equipment.
- The terminal area of the devices is part of the service. Here electrostatic discharge needs to be avoided. Attention! High voltages can cause dangerous body currents.
- Galvanic isolated potentials within one complex need to be placed on an appropriate point (normally earth or machines ground). So, a lower disturbance sensibility against impacted energy can be reached and dangerous potentials, that can occur on long lines or due to faulty wiring, can be avoided.

11. Error elimination

	Error description	Measures
1.	The unit permanently indicates overflow.	- The input has a very high measurement, check the measuring circuit. - With a selected input with a low voltage signal, it is only connected on one side or the input is open. - Not all of the activated setpoints are parameterised. Check if the relevant parameters are adjusted correctly.
2.	The unit permanently shows underflow.	- The input has a very low measurement, check the measuring circuit. - With a selected input with a low voltage signal, it is only connected on one side or the input is open. - Not all of the activated setpoints are parameterised. Check if the relevant parameters are adjusted correctly.
3.	The word HELP lights up in the 7-segment display.	- The unit has found an error in the configuration memory. Perform a reset on the default values and reconfigure the unit according to your application.
4.	Program numbers for parameterising of the input are not accessible.	- Programming lock is activated - Enter correct code
5.	Err1 lights up in the 7-segment display.	- Please contact the manufacturer if errors of this kind occur.
6.	The device does not react as expected.	- If you are not sure that the device has been parameterised before, then follow the steps as written in chapter 6 and set it back to its delivery status.

