User manual IM3

Potentiometer > 1 k $\Omega .$. < $1000 \mathrm{k} \Omega$

Technical features:

- red display from -19999... 99999 digits (optional green, orange, blue or tricolour display)
- installation depth: 120 mm without plug-in screw terminal
- multi voltage power supply unit 100-240 VAC, alternatively 10-40 VDC galv. isolated
- adjustment via factory setting or directly on the sensor signal
- min/max-memory with adjustable permanent display
- 30 additional supporting points
- display flashing at threshold value exceedance / undercut
- flexible alarm system with adjustable delay times
- brightness control via parameter or front keys
- programming interlock via access code
- protection class IP65 at the front
- plug-in screw terminal
- optional: 1 or 2 relay outputs
- optional: 1 independently scalable analog output
- optional: interface RS232 or RS485
- accessories: pc-based configuration-kit PM-TOOL with CD \& USB adapter
- on demand: devices for working temperatures of $-25^{\circ} \mathrm{C} . . .60^{\circ} \mathrm{C}$

Identification

STANDARD TYPES	ORDER NUMBER
Potentiometer Housing size: $96 \times 24 \mathrm{~mm}$	IM3-3VR5B.0005.S70xD
IM3-3VR5B.0005.W70xD	

Options - breakdown of order code:

Contents

1. Brief description 2
2. Assembly 2
3. Electrical connection 3
4. Description of function and operation 4
4.1. Programming software PM-TOOL 5
5. Setting up the device 6
5.1. Switching on 6
5.2. Standard parameterisation (flat operation level) 6Value assignment for the triggering of the signal input
5.3. Programming interlock ..RUM" 8
Activation/Deactivation of the programming interlock or change into professional or flat operation level
5.4. Extended parametersation (professional operation level) 9
5.4.1. Signal input parameters „IMP، 9Value assignment for the triggering of the signal input incl. linearisation
5.4.2. General device parameters „FCT* 12
Superior device functions like Hold, Tara, min/max permanent, setpoint value function / nominal value function, averaging, brightness control, as well as the control of the digital input and keyboard layout
5.4.3. Safety parameters ,, , $C 00^{"}$ 15Assignment of user and master code to lock or to receive access to defined parameter such asanalog output and alarms, etc
5.4.4. Serial parameters „SER" 16Parameter for interface definition
5.4.5. Analog parameters „OUT" and „OUZ"17Analog output functions
5.4.6. Relay functions „REL" 19
Parameter for setpoint definition
5.4.7. Alarm parameters „RLI...RL4" 20Actuator and dependencies of the alarms
5.4.8. Totaliser (Volume metering) „TOT" 22
Parameter for calculation of the sum function
6. Reset to factory settings 23
Reset parameters onto the delivery state
7. Alarms / Relays 24
Functional principle of the switching outputs
8. Interfaces 25
Connection RS232 and RS485
9. Sensor aligment 26Diagram of functional sequences for sensors with existing adjustable resistor
10. Technical data 27
11. Safety advices 29
12. Error elimination 30

1. Brief description

The panel meter instrument IM3-35 is a 5-digit device for Potentiometer values of $>1 \mathrm{k} \Omega$ to $<1000 \mathrm{k} \Omega$ and a visual threshold value monitoring via the display. The configuration happens via 3 keys at the front or via the optional PC software PM-TOOL. The integrated programming interlock prevents unrequested changes of parameters and can be unlocked again with an individual code. Optional available are one analog output or interfaces for further evaluating in the unit.
With help of the two galvanic isolated switching points (optional), free adjustable limit values can be controlled and reported to a superior master display.
The electrical connection is done via plug-in terminals on the back side.
Selectable functions like e.g. the recall of the min/max-value, an averaging of the measuring signals, a nominal value setting or setpoint setting, a direct threshold value regulation during operation mode and additional measuring supporting points for linearisation complete the modern device concept.

2. Assembly

Please read the Safety advices on page 29 before installation and keep this user manual for future reference.

1. After removing the fixing elements, insert the device.
2. Check the seal to make sure it fits securely.
3. Click the fixing elements back into place and tighten the clamping screws by hand. Then use a screwdriver to tighten them another half a turn.

CAUTION! The torque should not exceed 0.1 Nm !

The dimension symbols can be exchanged before installation via a channel on the side!

3. Electrical connection

Type IM3-3VT5B.0005.S70xD supply 100-240 VAC $50 / 60 \mathrm{~Hz}$, DC $\pm 10 \%$
Type IM3-3VC5B.0005.W70xD supply 10-40 VDC galv. isolated, $18-30$ VAC 50/60Hz

Options:

Alternatively to analog output

4. Function description and operation

Operation

The operation is divided into three different levels.
Menu level (delivery status)
This level was designed for the standard settings of the device. Only menu items which are sufficent to set the device into operation are displayed. To get into the professional level, run through the menu level and parameterise PROF under menu item RUM.

Menu group level (complete function volume)
Suited for complex applications as e.g. linkage of alarms, setpoint treatment, totaliser function etc. In this level function groups which allow an extended parameterisation of the standard settings are availabe. To leave the menu group level, run through this level and parameterise ULOC under menu item RUM.

Parameterisation level:

Parameter that are deposited in the menu item can here be parameterised. Functions, that can be changed or adjusted, are always signalised by a flashing of the display. Settings that are made in the parameterisation level are confirmed with [P] and thus saved. Pressing the [O]-key leads to a break-off of the value input and to a change into the menu level. All adjustments are saved automatically by the device and changes into operating mode, if no further key operation is done within the next 10 seconds.

Level	Key	Description
Menu-level	P	Change to parameterisation level and deposited values.
	$\triangle \nabla$	Keys for up and down navigation in the menu level.
	0	Change into operation mode.
Parameterisationlevel	P	To confirm the changes made at the parameterization level.
	$\triangle \nabla$	Adjustment of the value / the setting.
	O	Change into menu level or break-off in value input.
Menu-group-level	P	Change to menu level.
	$\triangle \nabla$	Keys for up and down navigation in the menu group level.
	O	Change into operation mode or back into menu level.

Function chart:

Underline:

P Takeover
(O) Stop

- Value selection (+)
- Value selection (-)

4.1. Parameterisation software PM-TOOL:

Part of the PM-TOOL are the software on CD and an USB-cable with device adapter. The connection happens via a 4-pole micromatch-plug on the back side of the device, to the PC-side the connection happens via an USB plug.

System requirements: PC incl. USB interface
Software: Windows XP, Windows VISTA
With this tool the device configuration can be generated, omitted and saved on the PC. The parameters can be changed via the easy to handle program surface, whereat the operating mode and the possible selection options can be preset by the program.

CAUTION!

During parameterisation with connected measuring signal, make sure that the measuring signal has no mass supply to the programming plug. The programming adapter is galvanically not isolated and directly connected with the PC. Via polarity of the input signal, a current can discharge via the adapter and destroy the device as well as other connected components!

5. Setting up the device

5.1. Switching on

Once the installation is complete, start the device by applying the voltage supply. Before, check once again that all electrical connections are correct.

Starting sequence

For 1 second during the switching-on process, the segment test ($\left.\begin{array}{llll}8 & 8 & 8 & 8\end{array}\right)$ is displayed followed by an indication of the software type and, after that, also for 1 second the software version. After the starting sequence, the device switches to operation/display mode.
5.2. Standard parameterisation: (Flat operation level)

To parameterise the display, press the [P]-key in operating mode for 1 second. The display then changes to the menu level with the first menu item TYPE.
Senu level
Parameterisation level
Setting up the display time, sec:
Default: 1.0

Menu level	Parameterisation level
$\begin{aligned} & F_{u}-i \\ & \|\nabla \Delta\| \end{aligned}$	Function for threshold value undercut／exceedance，$F U-1$ ： Default： $\boldsymbol{H I G H}$ A limit value undercut is selected with LOUU（for LOW＝lower limit value），a limit value exceedance with HIGH（for HIGH＝higher limit value）．If e．g．limit value 1 is on a threshold level of 100 and allocated with function H HGH，an alarm is activated by reaching of the threshold level． If the threshold value was allocated to LOW，an alarm will be activated by undercutting the threshold value，as long as the hysteresis is zero．
	The same applies to L－－7to L－－2 ！
$\begin{aligned} & \text { H.LロםE } \\ & \|\nabla \boxed{\nabla}\| \end{aligned}$	User code（4－digit number－combination，free available），U．CODE： Default： 0000 If this code was set（＞0000），all parameters are locked for the user，if LOC has been selected before under menu item RUM．By pressing［P］for 3 seconds in operation mode，the display shows CODE．The U．CODE needs to be entered to get to the reduced number of parameter sets． The code has to be entered befor each parametrisation，until the R．CODE（Master code）unlocks all parameters again．
$\begin{aligned} & \text { RILロロE } \\ & \|\nabla \triangle\| \end{aligned}$	Master code（4－digit number－combination，free available），R．CODE： Default： 1234 All parameters can be unlocked with this code，after LOC has been activated under menu item RUM．By pressing［P］for 3 seconds in operation mode，the display shows CODE and enables the user to reach all parameters by entering the R．CODE．Under RUM the parameterisation can be activated permanently by selecting $U L O C$ or $P R O F$ ，thus at an anew pushing of $[P]$ in operation mode，the code needs not to be entered again．
5．3．Programming interlock „RUM＊	
$\begin{aligned} & \text { run } \\ & \nabla \Delta \mid \end{aligned}$	Activation／deactivation of the programming lock or completion of the standard parameterisation with change into menu group level（complete function range），RUM： Default：ULOC $\text { ULOE } \frac{\Delta}{\nabla} \text { LDC } \frac{\Delta}{\nabla} \text { ProF } \frac{\Delta}{\nabla} \text { P }$ With the navigation keys［ \mathbf{A} ］［ \mathbf{V} ］，choose between the deactivated key lock ULOC（works setting）and the activated key lock LOC，or the change into the menu group level PROF．Confirm the selection with［P］．After this，the display confirms the settings with＂．．．．－＂，and automatically switches to operating mode．If $L O C$ was selected，the keyboard is locked．To get back into the menu level，press［P］for 3 seconds in operating mode．Now enter the CODE（works setting 1234 ）that appears using［ \mathbf{A} ］［ \mathbf{V} ］plus［P］to unlock the keyboard．FRIL appears if the input is wrong．To parameterise further functions PROF needs to be set．The device confirms this setting with ，＂－－－，，and changes automatically in operation mode．By pressing［P］for approx． 3 seconds in operation mode，the first menu group IMP is shown in the display and thus confirms the change into the extended parameterisation．It stays activated as long as ULOC or LOC is entered in menu group RUM．

5.4. Extended parameterisation (Professional operation level)

5.4.1. Signal input parameters

Menu level	Parameterisation level
	Number of additional supporting points, SPCT: Default: 00 30 additional supporting points can be defined to the initial value and final value, so linear sensor values are not linearised. Only activated setpoint parameters are displayed.
al 5.	Display values for supporting points, DI5.01... DIS.30: Under this parameter supporting points are defined according to their value. At the sensor calibration, like at final value/offset, one is asked at the end if a calibration shall be activated.
$1 \cap P \cdot \square$	Analog values for supporting points, IMP. 01 ... IMP.30: The supporting points are always preset according to the selected input signal mA/V. The demanded analog values can be freely adjusted in ascending order.
di Lind $\mid \nabla \triangle$	Device undercut, DIUMMD: Default: -19999 With this function the device undercut (_ _ _ _) can be defined on a definite value.
	Display overflow, II.OUE: Default: 99999 With this function the display overflow (-----) can be defined on a definite value.
$\begin{array}{ll} 5 & 1\left[\begin{array}{l} \text { In } \end{array}\right. \\ \nabla \nabla & \Delta \end{array}$	Input variable of process value, $5 / G . I I T:$ Default: R.MERS R.RERS กbu5 \square P With this parameter, the device can be controlled via the analog input signals R.MERS $=10$ VAC , 50 VAC respectively 1.5 AAC or via the digital signals of the interface m. $B U 5=$ RS232/RS485 (Modbus protocol). With [P] the selection is confirmed and the device changes into menu level.
$\begin{gathered} -E L \\ \nabla \Delta \end{gathered}$	Back to menu group level, RET: With [P] the selection is confirmed and the device changes into menu group level . -IMP-".

5.4.2. General device parameters

| Menu level | Parameterisation level |
| :--- | :--- | :--- |
| Display time, DISEC: | |

Menu level	Parameterisation level
$\begin{aligned} & \text { FLB5H } \\ & \uparrow \nabla \Delta \mid \end{aligned}$	Display flashing, FLRSH: Default: MO $\begin{aligned} & \square n a \frac{\Delta}{\nabla} \square R L-i \frac{\Delta}{\nabla} \square R L-2 \frac{\Delta}{\nabla} \square R L . I 2 \frac{\Delta}{\nabla} \\ & R L-3 \frac{\Delta}{\nabla} \square R L-4 \frac{\Delta}{\nabla} \square R L .34 \frac{\Delta}{\nabla} \square R L . R L \frac{\Delta}{\nabla} P \end{aligned}$ A display flashing can be added as additional alarm function either to single or to a combination of off-limit condition. With MO, no flashing is allocated.
$\begin{aligned} & \text { LR5L } \\ & \|\nabla \triangle\| \end{aligned}$	Assignment (deposit) of key functions, TRST: Default: NO For the operation mode, special functions can be deposited on the navigation keys [$\mathbf{\Delta}$] [$\mathbf{\nabla}$], in particular this function is made for devices in housing size $48 \times 24 \mathrm{~mm}$ which do not have a 4 th key ([O]-key). If the min/max-memory was activated by EHTR, all measured min/max-values are saved during operation and can be recalled via the navigation keys. The values get lost by restart of the device. If the threshold value correction $L 1.12$ or $L 1.34$ is choosen, the values of the threshold can be changed during operation without disturbing the operating procedure. With TRRR the device is set temporarily on a parameterised value. The device acknowledges the correct taring with 00000 in the display. SET.TR switches into the offset value and can be adjusted via the navigation keys. Via TOTRL the current value of the totaliser can be displayed, after this the device switches back on the parameterised display value. If TOT.RE is deposited, the totaliser can be set back by pressing of the navigation keys [$\mathbf{\Delta}$] [\mathbf{V}], the device acknowledges this with 00000 in the display. By allocation on EHT.RE the min/max-memory is deleted. At RCTUR the measuring value is shown, after this the device switches back on the parameterised display value. With LIGHT the brightness of the display is adjusted. This setting is not saved and gets lost in case of a restart fo the device. Via selection L1.1, L1.7-2, L1.7-3, L1.1-4, in case of 8 switching points L.1.-5..LLI.7-8, threshold values can be addressed via the navigation keys; they can be changed digit per digit or taken over by pushing the [P]-key. The adjustment is taken over directly, an excisting limit value monitoring and the current measurement will not be influenced by this. If $N O$ is selected, the navigation keys are without any function in the operation mode.
$\begin{aligned} & \square-E L \\ & \|\nabla \Delta\| \end{aligned}$	Back to menu group level, RET: With [P] the selection is confirmed and the device changes into menu group level .-FCT-".

5.4.3. Safety parameters

Menu lev	Parameterisation level			
$\begin{aligned} & \text { HiL } \mathrm{LG} \\ & \|\nabla \triangle\| \end{aligned}$	User code, U.CODE: Default: 0000 Via this code reduced sets of parameters can be set free. A change of the U.CODE can be done via the correct input of the R.CODE (master code).			
	Master code, R.CODE: Default: 1234 By entering $8 . C O D E$ the device will be unlocked and all parameters are released.			
BuL.LE $\|\nabla \Delta\|$	Release/lock analog output parameter, OUT.LE: Default: RLL חロ $E n-\Delta F$ But.ED RLL Analog output parameter can be locked or released for the user: - EM-OF: the initial or final value can be changed in operation mode - OUT.ED: the output signal can be changed from e.g. 0-20 mA to $4-20 \mathrm{~mA}$ or 0-10 VDC - RLL: analog output parameters are released - MO: all analog output parameters are locked			
$\begin{aligned} & \text { RL.LEL } \\ & \|\nabla \Delta\| \end{aligned}$		This parameter describes the user release/user lock of the alarm: - LIMIT: here only the range of value of the threshold values 1-4 can be changed - RLRM.L: here the range of value and the alarm trigger can be changed - RLL: all alarm parameters are released - MO: all alarm parameters are locked		

Menu level	Parameterisation level
-EL	Back to menu group level, RET:
$\mid \nabla \triangle$	With [P] the selection is confirmed and the device changes into menu group level ..-COD-"

5.4.4. Serial parameters

5．4．5．Analog output parameters

Menu level	Parameterisation level
$\begin{aligned} & \square ぃ L \square \\ & \uparrow \nabla \Delta \end{aligned}$	Selection reference of analog output，OUTPT： Default：RCTUR The analog output signal can refer to different functions，in detail these are the current measurand，the min－value，the max－value，the totaliser function／sum function，the constant value or the difference between current measurand and constant value．If HOLD is selected，the signal of the analog output will be kept．It can be continued processing after a deactivation of $H O L D$ ．With［P］the selection is confirmed and the device changes into menu level．
	Selection analog output，OUT．RR： Default：4－20 $\Delta-10 \frac{\Delta}{\nabla} \square-20 \frac{\Delta}{\nabla} \square-20 \frac{\Delta}{\nabla} P$ Three output signals are available：0－10 VDC， $0-20 \mathrm{~mA}$ and $4-20 \mathrm{~mA}$ ．Select the desired signal with this function．
$\begin{aligned} & \text { BuEEE } \\ & \|\nabla \Delta\| \mid \end{aligned}$	Setting the final value of the analog output，OUT．EM： Default： 10000 The final value is adjusted from the smallest to the highest digit with［ $\mathbf{\Delta}$ ］［ \mathbf{V} ］and confirmed digit per digit with $[\mathrm{P}]$ ．A minus sign can only be parameterised on the highest digit．After the last digit the device changes back into menu level．
	Setting the initial value of the analog output，OUT．OF： Default： 00000 The initial value is adjusted from the smallest to the highest digit with［ $\mathbf{\Delta}$ ］［ \mathbf{V} ］and confirmed digit per digit with［P］．A minus sign can only be parameterised on the highest digit．After the last digit the device changes back into menu level．

Menu level	Parameterisation level
$\begin{aligned} & \square F\llcorner\square U \\ & \|\nabla \Delta\| \end{aligned}$	Overflow behaviour, O.FLOU: Default: EDGE $\begin{aligned} & \text { EdLE } \frac{\Delta}{\nabla} \text { Lo.End } \frac{\Delta}{\nabla} \text { Lo.DFF } \frac{\Delta}{\nabla} \text { Ea.Min } n \frac{\Delta}{\nabla} \\ & \text { Ea.ПRH } \frac{\Delta}{\nabla} P \end{aligned}$ To recognise and evaluate faulty signals, e.g. by a controller, the overflow behaviour of the analog output can be defined. As overflow can be seen either EDGE, that means the analog output runs on the set limits e.g. 4 and 20 mA , or TO.OFF (input value smaller than initial value, analog output switches on e.g. 4 mA), TO.END (higher than final value, analog output switches on e.g. 20 mA). If TO.MIH or TO.MRX is set, the analog output switches on the smallest or highest possible binary value. This means that values of e.g. $0 \mathrm{~mA}, 0 \mathrm{VDC}$ or values higher than 20 mA or 10 VDC can be reached. With [P] the selection is confirmed and the device changes into menu level.
$\begin{aligned} & \mid r E L \\ & \uparrow \nabla \Delta \mid \end{aligned}$	Back to menu group level, RET: With [P] the selection is confirmed and the device changes into menu group level ..-OUT-".

5.4.6. Relay functions

5.4.7. Alarm parameters

Menu level | Parameterisation level |
| :--- |
| Dependency alarm 1, aLRM.I: |
| Default: RCTUR |

Menu level	Parameterisation level
$\begin{aligned} & L i-i \\ & \mid \nabla \Delta \end{aligned}$	Threshold values / limit values, $L 1-1$: Default: 2000 The limit value defines the threshold, that activates/deactivates an alarm.
$\begin{aligned} & H \Xi- \\ & \|\nabla \Delta\| \end{aligned}$	Hysteresis for threshold values, $4 \mathrm{H}-\mathrm{l}$: Default: 00000 The delayed reaction of the alarm is the difference to the threshold value, which is defined by the hysteresis.
$\begin{aligned} & F_{u}-i \\ & \uparrow \nabla \Delta \mid \end{aligned}$	Function for threshold value undercut /exceedance, $F u-1$: Default: HIGH A limit value undercut is selected with LOUU (for LOW = lower limit value), a limit value exceedance with HIGH (for HIGH = higher limit value). If e.g. limit value 1 is on a threshold level of 100 and allocated with function H HFH, an alarm is activated by reaching of the threshold level. If the threshold value was allocated to LOU, an alarm will be activated by undercutting the threshold value, as long as the hysteresis is zero.
$\begin{aligned} & \text { Ean-i } \\ & \|\nabla \Delta\| \end{aligned}$	Switching-on delay, TOM-1: Default: 000 For limit value 1 one can preset a delayed switching-on of $0-100$ seconds.
$\begin{aligned} & \text { LaF-i } \\ & \|\nabla \Delta\| \end{aligned}$	Switching-off delay, TOF-1: Default: 000 For limit value 1 one can preset a delayed switching-off of $0-100$ seconds.
$\begin{aligned} & \square-E L \\ & \|\nabla \Delta\| \end{aligned}$	Back to menu group level, RET: With [P] the selection is confirmed and the device changes into menu group level .-RLI-".

The same applies for RL2 to RL8.

5.4.8. Totaliser (Volume metering)

Menu level	Parameterisation level
$\begin{aligned} & \text { EaLRL } \\ & \|\nabla \Delta\| \end{aligned}$	State of totaliser, TOTRL: Default: OFF $\square F F \frac{\Delta}{\nabla} \text { StERd } \frac{\Delta}{\nabla} \text { LEMP } \stackrel{\Delta}{\nabla} \mathrm{P}$ The totaliser realizes measurements on a time base of e.g. l / h, at this the scaled input signal is integrated by time and steadily (select STERD) or temporarily (select TEMP) saved. Select the constant storage for consumption measurements and the quick storage for frequently filling processes. During the constant storage STERD the current sum value is saved at each totaliser reset. Furthermore it is safed every 30 minutes in the not-quick storage of the device. If ofF is selected, the function is deactivated. With [P] the selection is confirmed and the device changes into menu level.
$\begin{gathered} \text { L. } .6 R 5 E \\ \|\nabla \Delta\| \end{gathered}$	Time base, T.BASE: Default: SEC \qquad 5EL \square \square Iil n hour P Under this parameter the time base of the measurement can be preset in seconds, minutes or hours.
$\begin{aligned} & \text { FRcto } \\ & \|\nabla \Delta\| \end{aligned}$	Totaliser factor, FRCTO: Default: IED $\square \text { IED } \triangle \square \square \text { IES } \frac{\Delta}{\nabla} P$ At this the factor (1E0...1E6) respectively the divisor for the internal calculation of the measuring value is assigned
$\begin{aligned} & t a t . d t \\ & \|\nabla \Delta\| \end{aligned}$	Setting up the decimal point for the totaliser, TOT.DT: Default: 0 \square 0.0 0.0 0000 0.0000 The decimal point of the device can be adjusted with the navigation keys [$\mathbf{\Delta}$] [\mathbf{V}]. With [P] the selection is confirmed and the device changes into menu level.

| Menu level | Parameterisation level |
| :--- | :--- | | Totaliser reset, TOT.RE: |
| :--- |
| Default: 00000 |

Programming interlock, RUM:

6. Reset to default values

To return the unit to a defined basic state, a reset can be carried out to the default values.

The following procedure should be used:

- Switch off the power supply
- Press button [P]
- Switch on voltage supply and press [P]-button until ..-. - -" is shown in the display.

With reset, the default values of the program table are loaded and used for subsequent operation. This sets the unit back to the state in which it was supplied.

Caution! All application-related data are lost.

7. Alarms / Relays

This device has 4 virtual alarms that can monitor one limit value in regard of an undercut or exceedance. Each alarm can be allocated to an optional relay output S1-S2; furthermore alarms can be controlled by events like e.g. hold-value or min/max-value.

Function principle of alarms / relays	
Alarm / Relay \mathbf{x}	Deactivated, instantaneous value, min/max-value, hold-value, totaliser value, sliding average value, constant value, difference between instantaneous value and constant value or an activation via the digital input
Switching threshold	Threshold / limit value of the change-over
Hysteresis	Broadness of the window between the switching thresholds
Working principle	Operating current / quiescent current

Operating current

By operating current the alarm S1-S2 is off below the threshold and on on reaching the threshold.

Quiescent current

By quiescent current the alarm S1-S2 is on below the threshold and switched off on reaching the threshold.

Switching-on delay

The switching-on delay is activated via an alarm and e.g. switched 10 seconds after reaching the switching threshold, a short-term exceedance of the switching value does not cause an alarm, respectively does not cause a switching operation of the relay. The switching-off delay operates in the same way, keeps the alarm / the relay switched longer for the parametrised time.

8. Interfaces

Connection RS232

Digital display IM3 PC -9-pole Sub-D-plug

Connection RS485

Digital display IM3

The interface RS485 is connected via a screened data line with twisted wires (Twisted-Pair). On each end of the bus segment a termination of the bus lines needs to be connected. This is neccessary to ensure a secure data transfer to the bus. For this a resistance (120 Ohm) is interposed between the lines Data B (+) and Data A (-).

9. Sensor alignment offset / final value

The device is equipped with a semi-automatic sensor calibration (SENSE). A switching output operates the trimming resistor, which exists in some sensors. An adjustment of offset and final value takes place, after which the sensor can be used directly. Depending on parameterisation, the calibration can be realized via the 4th key or via the digital input. It is possible to key during the calibration steps. So, reference signals can be connected manually. However the calibration will be interrupted after 30 seconds.

10. Technical data

Housing			
Dimensions	96x24x120 mm (BxHxD)		
	$96 \times 24 \times 144$ (154) mm (BxHxD) incl. plug-in terminal		
Panel cut-out	$92.0^{+0.8} \times 22.2^{+0.3} \mathrm{~mm}$		
Wall thickness	up to 10 mm		
Fixing	screw elements		
Material	PC polycarbonate, black, UL94V-0		
Sealing material	EPDM, 65 Shore, black		
Protection class	standard IP65 (front), IP00 (back side)		
Weight	approx. 200 g		
Connection	plug-in terminal; wire cross-section up to $2.5 \mathrm{~mm}^{2}$		
Display			
Digit height	14 mm		
Segment colour	red (optional green, orange or blue)		
Range of display	-19999 to 99999		
Setpoint	one LED per setpoint		
Overflow	horizontal bars at the top		
Underflow	horizontal bars at the bottom		
Display time	0.1 to 10.0 seconds		
Input	Measuring range	Measuring error	Digit
> $1 \mathrm{k} \Omega \ldots<1.000 \mathrm{k} \Omega$	1... 100%	0.5% of measuring range	± 1
Accuracy			
Drift of temperature	$100 \mathrm{ppm} / \mathrm{K}$		
Measuring time	0.1..10.0 seconds		
Measuring principle	U/F-conversion		
Resolution	approx. 18 bit at 1s measuring time		

Output	
Analog output	0/4-20 mA / burden ≤ 500 Ohm, 0-10 VDC / burden $\geq 10 \mathrm{kOhm}, 16$ bit
Switching outputs	
Relay with change-over contact Switching cycles	250 VAC / 2 AAC; $30 \mathrm{VDC} / 2$ ADC 0.5×10^{5} at contact load 0.5×10^{6} mechanically Division according to DIN EN 50178 / Characteristics according to DIN EN 60255
Interface	
Protocol	Modbus with ASCII or RTU-protocol
RS232	9.600 Baud, no parity, 8 Databit, 1 Stopbit, cable length max. 3 m
RS485	9.600 Baud, no parity, 8 Databit, 1 Stopbit, cable length max. 1000 m
Power supply	$100-240$ VAC $50 / 60 \mathrm{~Hz} / \mathrm{DC} \pm 10 \%$ (max. 10 VA) $10-40$ VDC galv. isolated, $18-30 \mathrm{VAC} 50 / 60 \mathrm{~Hz}$ (max. 10 VA)
Memory	EEPROM
Data life	≥ 100 years $/ 25^{\circ} \mathrm{C}$
Ambient conditions	
Working temperature	$0^{\circ} \mathrm{C} \ldots . .50^{\circ} \mathrm{C}$
Storing temperature	$-20^{\circ} \mathrm{C} \ldots . .80^{\circ} \mathrm{C}$
Weathering resistance	relative humidity $0-80 \%$ on years average without dew
EMV	EN 61326, EN 55011
CE-sign	Conformity according to directive 2014/30/EU
Safety standard	According to low voltage directive 2014/35/EU EN 61010; EN 60664-1

11. Safety advices

Please read the following safety advices and the assembly chapter 2 before installation and keep it for future reference.

Proper use

The IM3-35-device is designed for the evaluation and display of sensor signals.

Danger! Careless use or improper operation can result in personal injury and/or cause damage to the equipment.

Control of the device

The panel meters are checked before dispatch and sent out in perfect condition. Should there be any visible damage, we recommend close examination of the packaging. Please inform the supplier immediately of any damage.

Installation

The IM3-35-device must be installed by a suitably qualified specialist (e.g. with a qualification in industrial electronics).

Notes on installation

- There must be no magnetic or electric fields in the vicinity of the device, e.g. due to transformers, mobile phones or electrostatic discharge.
- The fuse rating of the supply voltage should not exceed a value of 0.5A N.B. fuse!
- Do not install inductive consumers (relays, solenoid valves etc.) near the device and suppress any interference with the aid of RC spark extinguishing combinations or free-wheeling diodes.
- Keep input, output and supply lines separate from one another and do not lay them parallel with each other. Position "go" and "return lines" next to one another. Where possible use twisted pair. So, you receive best measuring results.
- Screen off and twist sensor lines. Do not lay current-carrying lines in the vicinity. Connect the screening on one side on a suitable potential equaliser (normally signal ground).
- The device is not suitable for installation in areas where there is a risk of explosion.
- Any electrical connection deviating from the connection diagram can endanger human life and/or can destroy the equipment.
- The terminal area of the devices is part of the service. Here electrostatic discharge needs to be avoided. Attention! High voltages can cause dangerous body currents.
- Galvanic isolated potentials within one complex need to be placed on an appropriate point (normally earth or machines ground). So, a lower disturbance sensibility against impacted energy can be reached and dangerous potentials, that can occur on long lines or due to faulty wiring, can be avoided.

12. Error elimination

	Error description	Measures
1.	The unit permanently indicates overflow.	- The input has a very high measurement, check the measuring circuit. - With a selected input with a low voltage signal, it is only connected on one side or the input is open. - Not all of the activated setpoints are parameterised. Check if the relevant parameters are adjusted correctly.
2.	The unit permanently shows underflow.	- The input has a very low measurement, check the measuring circuit. - With a selected input with a low voltage signal, it is only connected on one side or the input is open. - Not all of the activated setpoints are parameterised. Check if the relevant parameters are adjusted correctly.
3.	The word HELP lights up in the 7-segment display.	- The unit has found an error in the configuration memory. Perform a reset on the default values and reconfigure the unit according to your application.
4.	Program numbers for parameterising of the input are not accessible.	- Programming lock is activated - Enter correct code
5.	Err1 lights up in the 7-segment display	- Please contact the manufacturer if errors of this kind occur.
6.	The device does not react as expected.	- If you are not sure that the device has been parameterised before, then follow the steps as written in chapter 6 and set it back to its delivery status.

