User manual IM3

Pt100 2-/3-/4-wire $-200.0^{\circ} \mathrm{C} \ldots .850^{\circ} \mathrm{C} /-328.0^{\circ} \mathrm{F}$... $1562.0^{\circ} \mathrm{F}$

Technical features:

- red display of -19999... 99999 digits (optional: green, orange or blue display)
- minimal installation depth: 90 mm without plug-in screw terminal
- min/max-memory
- display flashing at threshold value exceedance / threshold value undercut
- permanent min/max-value recording
- brightness control
- programming interlock via access code
- protection class IP65 at the front side
- plug-in screw terminal
- optional: 2 PhotoMos outputs
- optional: analog output
- accessories: PC-based configuration-kit PM-TOOL with CD \& USB-adapter for devices without keypad and for a simple adjustment of standard devices

Identification

STANDARD-TYPES	ORDER NUMBER 2-/4-wire	ORDER NUMBER 3-wire
Pt100 2-/3-/4-wire	IM3-7TR5A.010C.S70xD	IM3-7TR5A.030C.S70xD
Housing size: $48 \times 24 \mathrm{~mm}$	IM3-7TR5A.010C.770xD	IM3-7TR5A.030C.770xD

Options - breakdown of order code:

Contents

1. Brief description 2
2. Assembly 3
3. Electrical connection 4
4. Functions and operation description 6
4.1. Programming software PM-TOOL 7
5. Setting up the device 8
5.1. Switching on 8
5.2. Standard parameterisation (flat operation level) 8
Value assigment for triggering of the signal input
5.3. Programming interlock .RUN" 11
Activation/Deactivation of the programming interlock or change into the professional level respectively back into the flat operation level
5.4. Extended parameterisation (professional operation level) 12
5.4.1. Signal input parameter „IMP" 12
Value assigment for triggering of the signal input
5.4.2. General device parameter „FCT، 15
Superior device functions like min/max permanent, brightness control, as well as the control of the keyboard configuration
5.4.3. Safety parameter „COX" 19
Assignment of user and master code for locking or access to certain parameters like e.g. analog output and alarms, etc.
5.4.4. Analog output parameter „OUT" 20
Analog output functions
5.4.5. Relay functions „REL"
Parameter for the definition of the setpoints
5.4.6. Alarm parameter „RLIT..RLY 24
Activator and dependencies of the alarms
6. Reset to factory settings 27
Reset of the parameter to the factory default settings
7. Alarms / Relays 28
Function principle of the switching outputs
8. Technical data 30
9. Safety advices 32
10. Error elimination 33

1. Brief description

The panel meter instrument IM3-7C is a 5-digit device for Pt100 temperature sensors and a visual threshold value monitoring via the display. The configuration happens via three keys at the front or by the optional PC software PM-TOOL. The integrated programming interlock prevents unrequested changes of parameters and can be unlocked again with an individual code. Optional an analog output for further processing in the equipment is available. And on demand two free adjustable setpoints with which threshold values can be controlled and reported to an superior master display.
The electrical connection is done via plug-in terminals on the back side.
Selectable functions like e.g. the recall of the $\mathrm{min} / \mathrm{max}$-value, a direct threshold value regulation during operation mode, complete the modern device concept.

2. Assembly

Please read the Safety advices on page 32 before installation and keep this user manual for future reference.

1. After removing the fixing elements, insert the device.
2. Check the seal to make sure it fits securely.
3. Click the fixing elements back into place and tighten the clamping screws by hand. Then use a screwdriver to tighten them another half a turn.

CAUTION! The torque should not exceed 0.1 Nm !

Change signs of the physical unit before assembly via a channel at the side of the front! The change can only be done from the outside before assembly!

3. Electrical connection

Type IM3-7TR5A.010C.S70xD 2-/4-wire Type IM3-7TR5A.030C.S70xD 3-wire supply of 100-240 VAC

Options:

Type IM3-7TR5A.010C.770xD 2-/4-wire Type IM3-7TR5A.030C.770xD 3-wire supply of 24 VDC

Options:

4. Function and operation description

Operation

The operation is divided into three different levels.

Menu level (delivery status)

The menu level is for the standard settings of the device. Only menu items which are sufficient to set the device into operation are displayed. To get into the professional level, run through the menu level and parameterise "PROF" under menu item RUN.

Menu group level (complete function volume)
Suited for complex applications as e.g. linkage of alarms, setpoint treatment, totaliser function etc. In this level function groups which allow an extended parameterisation of the standard settings are availabe. To leave the menu group level, run through this level and parameterise „ULOL,, under menu item RUM.

Parameterisation level:

Parameter deposited in the menu item can here be parameterised. Functions, that can be changed or adjusted, are always signalised by a flashing of the display. Settings that are made in the parameterisation level are confirmed with [P] and thus safed. Pressing the [O]-key („zero-key") leads to a break-off of the value input and to a change into the menu level. All adjustments are saved automatically by the device and it changes into operating mode, if no further key operation is done within the next 10 seconds.

Level	Key	Description
Menu level	P	Change to parameterisation level and deposited values.
	\triangle -	Keys for up and down navigation in the menu level.
	$\triangle \square$	Change into operation mode by pushing both navigation keys at the same time.
Parameterisation level	P	To confirm the changes made at the parameterization level.
	$\triangle \nabla$	Adjustment of the value / the setting.
	\triangle -	Change into menu level or stop of the value input, by pushing both navigation keys at the same time.
Menu group level	P	Change to menu level
	$\triangle \square$	Keys for up and down navigation in the menu group level.
	\triangle -	Change into operation mode or return into menu level, by pushing both navigation keys at the same time.

Function chart:

Standard parameterisation

(Flat operation level)

Extended parameterisation
(Professional operation level)

Explanation:

P	Take-over
Δ	Breakoff by simultaneously pushing of the navigation keys
Δ	Value selection $(+)$
∇	Value selection $(-)$

4.1 Parameterisation software PM-TOOL:

Included in the delivery of the PM-TOOL are the software on CD and an USB-cable with device adapter. The connection happens via a 4-pole micromatch-plug on the back side of the device, to the PC-side the connection happens via an USB plug.

System requirements: PC incl. USB interface Software: Windows XP, Windows VISTA

With this tool the device configuration can be generated, omitted and safed on the PC. The parameters can be changed via the easy to handle program surface, whereat the operating mode and the possible selection options can be preset by the program.

5. Setting up the device

5.1. Switching on

Once the installation is complete, start the device by applying the voltage supply. Before, check once again that all electrical connections are correct.

Starting sequence

For 1 second during the switching-on process, the segment test ($\begin{array}{ll}8 & 8 \\ 8 & 8\end{array}$) is displayed followed by an indication of the software type and, after that, also for 1 second the software version. After the starting sequence, the device switches to operation/display mode.

5.2. Standard parameterisation: (Flat operation level)

To parameterize the display, press the [P]-key in operating mode for 1 second. The display then changes to the menu level with the first menu item TYPE.
Menu level

| Penu level | Parameterisation level |
| :--- | :--- | :--- |
| Selection of analog output, out.RR: | |
| Default: $4-20$ | |

Menu leve	Parameterisation level
$\begin{aligned} & L I^{-} \\ & \sqrt{\nabla} \end{aligned}$	Threshold values / limits, Ll-z: Default: 300.0 This value defines the threshold, that activates/deactivates an alarm.
$\begin{aligned} & \mathrm{HU}- \\ & \boxed{\Delta} \triangle \end{aligned}$	Hysteresis for threshold values, Hy -z: Default: 0.0 The delayed reaction of the alarm is the difference to the threshold value, which is defined by the hysteresis.
$\begin{aligned} & F_{u}- \\ & \nabla \Delta \end{aligned}$	Function if display falls below / exceeds limit value, FU -2: Default: HIGH H ILH Laue A limit value undercut is selected with LOUU (for LOW = lower limit value), a limit value exceedance with HIGH (for HIGH = higher limit value). If e.g. limit value 1 is on a threshold level of 100 and allocated with function $H I G H$, an alarm is activated by reaching the threshold level. If the threshold value was allocated to LOU, an alarm will be activated by undercutting the threshold value, as long as the hysteresis is zero.
$\begin{aligned} & \text { H.Lad } \\ & \boxed{\nabla} \triangle \end{aligned}$	User code (4-digit number-combination, free available), U.CODE: Default: 0000 If this code was set (>0000), all parameters are locked for the user, if $L O C$ has been selected before under menu item RUM. By pressing [P] for 3 seconds in operation mode, the display shows CODE. The U.CODE needs to be entered to get to the reduced number of parameter sets. The code has to be entered befor each parameterisation, until the R.CODE (Master code) unlocks all parameters again.
$$	Master code (4-digit number-combination, free available), R.CODE: Default: 1234 All parameters can be released with this code, after LOC has been activated under menu item RUM. By pressing [P] for 3 seconds in operation mode, the display shows CODE and enables the user to reach all parameters by entering the R.CODE. Under RUM the parameterisation can be activated permanently by selecting $U L O C$ or $P R O F$, thus at an anew pushing of $[P]$ in operation mode, the code needs not to be entered again.

| Menu level | Parameterisation level |
| :---: | :--- | :--- |
| 5.3. Programming interlock ,,RUM4" | |
| | Activation / deactivation of the programming lock or completion of the standard para-
 meterization with change into menu group level (complete function range), RUM:
 Default: ULOC |

5.4. Extended parameterisation (Professional operation level)

5.4.1. Signal input parameters

| Menu level | Parameterisation level |
| :--- | :--- | :--- |

Setting the measuring range start / offset value, OFFS:
Default: 0.0

The value for the sensor calibration is selectable from the smallest to the highest digit with [$\mathbf{\Delta}][\mathbf{V}]$ and confirmed with [P]. After the last digit the display switches back to the menu level again. The value calibration for a temperature measurement in ${ }^{\circ} \mathrm{C}$ can be adjusted between 20.0 and +20.0 and in ${ }^{\circ} \mathrm{F}$ between -36.0 and +36.0 . If the type of the measurement is changed later, then the value is rounded.

Device undercut, DIUMM:
Default: -19999

With this function the device undercut (__ _ _) can be defined on a definite value. Exception is input type 4-20 mA, it already shows undercut at a signal $<1 \mathrm{~mA}$, so a sensor failure is marked.

Menu leve	Parameterisation level
$\begin{gathered} \square 1 . \square H E \\ \nabla \triangle \Delta \mid \end{gathered}$	Display overflow，DI．OUE： Default： 99999
$\begin{aligned} & \square E E \\ & \|\nabla \Delta\| \end{aligned}$	Back to menu group level，RET： With［P］the selection is confirmed and the device changes into menu group level ．．－IMP－＂．

5．4．2．General device parameters

Menu level	Parameterisation level				
Gi.5E	Display time，DISEC： Default： 01.0 प 0 ！ \square 00.9 then \square 010 $\stackrel{\Delta}{\nabla}$ \qquad 10.0 The display is set up with［ \mathbf{A} ］［ $\mathbf{\nabla}$ ］．Thereby it switches until 1 second in increments of 0.1 seconds and until 10.0 seconds in increments of 1.0 ．With［P］the selection is confirmed and the device changes into menu level．				
「ロレாロ $\uparrow \nabla \Delta$	Rounding of display values，ROUMD： Default： 00001 $00001 \frac{\Delta}{\nabla} 00005 \frac{\Delta}{\nabla} 00010 \frac{\Delta}{\nabla} 00050$ This function is for instable display values，where the display value is changed in increments of $1,5,10$ or 50 ．This does not affect the resolution of the optional outputs．With［P］ the selection is confirmed and the device changes into menu level．				
$\begin{aligned} & \Delta i \quad 5 \square L \\ & \|\nabla \Delta\| \end{aligned}$	Rctur $\frac{\Delta}{\nabla}$ III nUR $\stackrel{\Delta}{\nabla}$ חRHUR $\stackrel{\Delta}{\nabla}$ 『 With this function the current measuring value or the min／max－value．With $[P]$ the selection is confirmed and the device changes into menu level．				

Menu level	Parameterisation level
$\begin{aligned} & L I L H E \\ & \|\nabla \triangle\| \end{aligned}$	Brightness control, LIGHT: Default: 15 The brightness of the display can be adjusted in 16 levels from $00=$ very dark to $15=$ very bright via this parameter or alternatively via the navigation keys from the outside. During the start of the device the level that is deposited under this parameter will always be used, even though the brightness has been changed via the navigation keys in the meantime.
$\begin{aligned} & F L R S H \\ & \|\nabla \Delta\| \end{aligned}$	Display flashing, FLRSH: Default: MO $\begin{aligned} & \square \text { na } \stackrel{\Delta}{\nabla} \text { RL-: } \frac{\Delta}{\nabla} \text { RL- } 2 \stackrel{\Delta}{\nabla} \text { RL.I2 } \frac{\Delta}{\nabla} \\ & R L-3 \stackrel{\Delta}{\nabla} \text { RL-4 } \frac{\Delta}{\nabla} \text { RL. } 34 \frac{\Delta}{\nabla} \text { RL.RL } \frac{\Delta}{\nabla} \mathbb{P} \end{aligned}$ A display flashing can be added as additional alarm function either to single or to a combination of off-limit condition. With MO, no flashing is allocated.
$\begin{aligned} & \text { LR5L } \\ & \qquad \triangle \Delta \mid \end{aligned}$	Assignment (deposit) of key functions, TRST: Default: MO $\begin{aligned} & \text { EHER } \stackrel{\Delta}{\nabla} \text { LI.I2 } \frac{\Delta}{\nabla} \text { LI. } 34 \frac{\Delta}{\nabla} \text { EHE.rE } \\ & \text { RctuR } \frac{\Delta}{\nabla} \text { पa } \frac{\Delta}{\nabla} \mathbb{P} \end{aligned}$ For the operation mode, special functions can be deposited on the navigation keys [$\mathbf{\Delta}$] [\mathbf{V}], in particular this function is made for devices in housing size $48 \times 24 \mathrm{~mm}$ which do not have a 4 th key ([O]-key). If the min/max-memory is activated with EHTR, all measured min/max-values are saved during operation and can be recalled via the navigation keys. The values get lost by restart of the device. If the threshold value correction $L .1 .12$ or $L .34$ is choosen, the values of the threshold can be changed during operation without disturbing the operating procedure. If $N O$ is selected, the navigation keys are without function in the operation mode.
$\begin{gathered} \quad r E L \\ \nabla \Delta \mid \end{gathered}$	Back to menu group level, RET: With [P] the selection is confirmed and the device changes into menu group level ..-FCT-".

5.4.3. Safety parameters

| Menu level | Parameterisation level |
| :--- | :--- | :--- | :--- |
| User code U.cone: | |
| Default: 0000 | |

Menu level	Parameterisation level
-EL	Back to menu group level, RET:
$\uparrow \nabla \Delta$	With [P] the selection is confirmed and the device changes into menu group level ..-COD-".

5.4.4. Analog output parameters

Menu leve	Parameterisation level
$\begin{aligned} & \text { BLLPL } \\ & \|\nabla \Delta\| \mid \end{aligned}$	Selection reference analog output, OUTPT: Default: actur The analog output signal can refer to different functions, in detail this are the current measurand, min/max-value.With [P] the selection is confirmed and the device changes into menu level.
	Selection analog output, out.RR: Default: 4-20 $\square-10 \frac{\Delta}{\nabla} \square \Delta-2 \Omega \frac{\Delta}{\nabla} \square 4-2 \Omega \frac{\Delta}{\nabla} P$ Availabe are 3 output signals: $0-10 \mathrm{VDC}, 0-20 \mathrm{~mA}$ and $4-20 \mathrm{~mA}$. With this function the demanded signal can be selected.
ПぃL.E	Setting up the final value of the analog output, OUT.EM: Default: 850.0 The final value can be adjusted from the smallest to the largest digit with [$\boldsymbol{\Delta}$] [$\boldsymbol{\nabla}$]. Confirm each digit with [P]. A minus sign can only be parameterized on the leftmost digit. After the last digit, the display switches back to the menu level.

Menu level	Parameterisation level
	Setting the initial value of the analog output, oUT.OF: Default: -200.0 The initial value is adjusted from the smallest to the highest digit with [\mathbf{A}] [\mathbf{V}] and confirmed digit per digit with [P]. A minus sign can only be parameterized on the leftmost digit. After the last digit the device changes back into menu level.
	Overflow behaviour, O.FLOU: Default: EDGE EdUE Eo.End To recognise and evaluate faulty signals, e.g. by a controller, the overflow behaviour of the analog output can be defined. As overflow can be seen either $E D G E$, that means the analog output runs on the set limits e.g. 4 and 20 mA , or TO.OFF (input value smaller than initial value, analog output switches on e.g. 4 mA), $\operatorname{TD.END}$ (higher than final value, analog output switches on e.g. 20 mA). If TO.MIM or TO.MAX is set, the analog output switches on the least significant or leftmost possible binary value. This means that values of e.g. $0 \mathrm{~mA}, 0 \mathrm{VDC}$ or values higher than 20 mA or 10 VDC can be reached. With [P] the selection is confirmed and the device changes into menu level.
$\begin{aligned} & \mid r E E \\ & \|\nabla \Delta\| \end{aligned}$	Back to menu group level, RET: With [P] the selection is confirmed and the device changes into menu group level ..-OUT-".

5.4.5. Relay functions

Menu level	Parameterisation level		
$\begin{aligned} & -E L-E \\ & \nabla \nabla \Delta \end{aligned}$	Alarm relay Default：RL－2 LoEi Each setpoin at activated available in the other selecte activated／dea front of the d	REL－2： i．．．．RL－ optional）can be link arms RL－1／4 or deac menu level LOG－1 and unctions，these two ivated，in this case ce．With［P］the sele	\qquad RL－n4 On \square via 4 alarms（by default）．This can either be inserted d alarms RLMT／Y．If LOGIC is selected，logical links are －1．Access to these two menu levels is via LOGIC，at all meters are overleaped．Via OM／OFF the setpoints can be output and the setpoint display are set／not set on the is confirmed and the device changes into menu level．
$\begin{aligned} & \text { LaE-Z } \\ & \|\nabla \Delta\| \mid \end{aligned}$	Logic relay Default：OR The switchin these functio selected und	LOG－2： behaviour of the relay with inclusion of RL－ REL－I．	Rind \square nRind P efined via a logic link，the following schema describes RL－2：This parameter can only be selected if LOGIC was
	ar	A1 v A2	As soon as a selected alarm is activated，the relay operates．Equates to operating current principle．
	nロr	$\overline{A 1 \vee A 2}=\overline{A 1} \wedge$	The relay operates only，if no selected alarm is active．Equates to quiescent current principle．
	Rn	$\mathrm{A} 1 \wedge \mathrm{a} 2$	The relay operates only，if all selected alarms are active．
	の日п	$\overline{A 1 \wedge A 2}=\overline{A 1} \vee$	As soon as a selected alarm is not activated，the relay operates．
	With［P］the selection is confirmed and the device changes into menu level．		
$\begin{aligned} & \text { Eaß-己 } \\ & \|\nabla \Delta\| \mid \end{aligned}$	The allocation of the alarms to relay 2 happens via this parameter，one alarm or a group of alarms can be chosen．With $[P]$ the selection is confirmed and the device changes into menu level．		
$\begin{aligned} & \mid r E L \\ & \|\nabla \Delta\| \end{aligned}$	Back to men With［P］the	group level，RET： ection is confirmed	he device changes into menu group level ．．－REL－＊．

5.4.6. Alarm parameters

Menu level	Parameterization level
$B L \Gamma$	Dependency alarm 1, RLRM.l: Default: RCTUR $\text { RctuR } \frac{\Delta}{\nabla} \text { חilun } \frac{\Delta}{\nabla} \text { חRHu' } \frac{\Delta}{\nabla} \mathrm{P}$ The dependency of alarm 1 can be related to special functions, in detail these are the current measurand, the min-value or the max-value. EHTER causes the dependency either by pressing the [O]-key on the front of the housing or by an external signal via the digital input. With [P] the selection is confirmed and the device changes into menu level. Example: By using the maximum value RLRRM. $1=\operatorname{mRX} . V R$ in combination with a threshold monitoring $F U-1=$ HIGH, an alarm confirmation can be realised. Use the digital input for confirmation.
$\begin{array}{ll} \begin{array}{ll} L & i-1 \\ \nabla & \Delta \end{array} \\ \nabla \nabla \end{array}$	Threshold values / limit values, $\mathrm{L}-\mathrm{l}$: Default: 200.0 The limit value defines the threshold, that activates/deactivates an alarm.
$\begin{aligned} & H \exists- \\ & \|\nabla \triangle\| \end{aligned}$	Hysteresis for threshold values, $\mathrm{Hy}-\mathrm{l}$: Default: 0.0 The delayed reaction of the alarm is the difference to the threshold value, which is defined by the hysteresis.
$\begin{aligned} & F_{u}- \\ & \sqrt{\nabla} \end{aligned}$	Function for threshold value undercut / exceedance, $F U-1$: Default: HIGH $H \text { ILH } \frac{\Delta}{\nabla} \text { Laレu } \frac{\square}{\nabla}$ A limit value undercut is selected with LOUU (for LOW = lower limit value), a limit value exceedance with HIGH (for HIGH = higher limit value). If e.g. limit value 1 is on a threshold level of 100 and allocated with function $H_{H H}$, an alarm is activated by reaching the threshold level. If the threshold value was allocated to LOW, an alarm will be activated by undercutting the threshold value, as long as the hysteresis is zero.

The same applies to -RL2- to -RLY-

Programming interlock, RUN:

6. Reset to factory settings

To return the unit to a defined basic state, a reset can be carried out to the default values.
The following procedure should be used:

- Switch off the power supply
- Press button [P]
- Switch on voltage supply and press [P]-button until ..-...-" appears in the display.

With reset, the default values of the program table are loaded and used for subsequent operation. This sets the device back to the state in which it was supplied.

Caution! All application-related data are lost.

7. Alarms / Relays

This device has 4 virtual alarms that can monitor one limit value in regard of an undercut or exceedance. Each alarm can be allocated to an optional relay output S1-S2; furthermore alarms can be controlled by events like e.g. min/max-value.

Function principle of alarms / relays	
Alarm / Relay \mathbf{x}	Deactivated, instantaneous value, min/max-value
Switching threshold	Threshold / limit value of the change-over
Hysteresis	Broadness of the window between the switching thresholds
Working principle	Operating current / Quiescent current

Operating current

By operating current the alarm S1-S2 is off below the threshold and on on reaching the threshold.

Quiescent current

By quiescent current the alarm S1-S2 is on below the threshold and switched off on reaching the threshold.

Switching-on delay

The switching-on delay is activated via an alarm and e.g. switched 10 seconds after reaching the switching threshold, a short-term exceedance of the switching value does not cause an alarm, respectively does not cause a switching operation of the relay. The switching-off delay operates in the same way, keeps the alarm / the relay switched longer for the parameterised time.

8. Technical data

Housing			
Dimensions	$48 \times 24 \times 90 \mathrm{~mm}$ (BxHxD)		
	$48 \times 24 \times 109 \mathrm{~mm}(\mathrm{BxHxD})$ incl. plug-in terminal		
Panel cut-out	$45.0^{+0.6} \times 22.2^{+0.3} \mathrm{~mm}$		
Wall thickness	up to 3 mm		
Fixing	screw elements		
Material	PC Polycarbonate, black, UL94V-0		
Sealing material	EPDM, 65 Shore, black		
Protection class	standard IP65 (front side), IP00 (back side)		
Weight	approx. 200 g		
Connection	plug-in terminal; wire cross section up to $2.5 \mathrm{~mm}^{2}$		
Display			
Digit height	10 mm		
Segment colour	red (optional green, yellow or blue)		
Range of display	-19999 to 99999		
Setpoints	one LED per setpoint		
Overflow	horizontal bars at the top		
Underflow	horizontal bars at the bottom		
Display time	0.1 to 10.0 seconds		
Input	Measuring range	Measuring error	Digit
Pt100 2-/3-/4-wire	-200.0...850.0 ${ }^{\circ} \mathrm{C}$	0.1 \% of measuring range	± 1
Pt100 2-/3-/4-wire	-328.0...1562.0º	0.1 \% of measuring range	± 1
Accuracy			
Temperature drift	100 ppm / K		
Measuring time	$0.1 . . .10 .0$ seconds		
Measuring principle	U/F-conversion		
Resolution	$0.1^{\circ} \mathrm{C}$ or $0.1^{\circ} \mathrm{F}$		
Output			
Sensor supply	$24 \mathrm{VDC} / 50 \mathrm{~mA}$; $10 \mathrm{VDC} / 20 \mathrm{~mA}$		
Analog output	0/4-20 mA / burden $\leq 500 \Omega$; 0-10 VDC / burden $\geq 10 \mathrm{k} \Omega$, 16 Bit		
Switching outputs	2 PhotoMos (Closer) $30 \mathrm{VDC/AC}, 0.4 \mathrm{~A}$		
Power pack	$\begin{aligned} & 100-240 \mathrm{VAC} 50 / 60 \mathrm{~Hz} / \mathrm{DC} \pm 10 \% \text { (max. } 5 \mathrm{VA} \text {) } \\ & 24 \mathrm{VDC} \pm 10 \% \text { galv. isolated (max. } 4 \mathrm{VA}) \end{aligned}$		
Memory	EEPROM		
Data life	≥ 100 years at $25^{\circ} \mathrm{C}$		

Ambient conditions		
Working temperature	$0 \ldots 50^{\circ} \mathrm{C}$	
Storing temperature	$-20 \ldots 80^{\circ} \mathrm{C}$	
Weathering resistance	$0-80 \%$ relative humidity on years average without dew	
EMV	EN 61326	
CE-sign	Conformity according to directive 2014/30/EU	
Safety standard	According to low voltage directive 2014/35/EU EN 61010; EN 60664-1	

9. Safety advices

Please read the following safety advices and the assembly in chapter 2 before installation and keep it for future reference.

Proper use

The IM3-7C-device is designed for the evaluation and display of sensor signals.

Danger! Careless use or improper operation can result in personal injury and/or can damage the equipment.

Control of the device

The panel meters are checked before dispatch and sent out in perfect condition. Should there be any visible damage, we recommend close examination of the packaging. Please inform the supplier immediately of any damage.

Installation

The IM3-7C-device must be installed by a suitably qualified specialist (e.g. with a qualification in industrial electronics).

Notes on installation

- There must be no magnetic or electric fields in the vicinity of the device, e.g. due to transformers, mobile phones or electrostatic discharge.
- The fuse rating of the supply voltage should not exceed a value of 0.5A N.B. fuse!
- Do not install inductive consumers (relays, solenoid valves etc.) near the device and suppress any interference with the aid of RC spark extinguishing combinations or free-wheeling diodes.
- Keep input, output and supply lines separate from one another and do not lay them parallel with each other. Position "go" and "return lines" next to one another. Where possible use twisted pair. This way best measuring results are received.
- Screen off and twist sensor lines. Do not lay current-carrying lines in the vicinity. Connect the screening on one side on a suitable potential equaliser (normally signal ground).
- The device is not suitable for installation in areas where there is a risk of explosion.
- Any electrical connection deviating from the connection diagram can endanger human life and/or can destroy the equipment.
- The terminal area of the device is part of the service. Here electrostatic discharge needs to be avoided. Attention! High voltages can cause dangerous body currents.
- Galvanic isolated potentials within one complex need to be placed on an appropriate point (normally earth or machines ground). So, a lower disturbance sensibility against impacted energy can be reached and dangerous potentials, that can occur on long lines or due to faulty wiring, can be avoided.

10. Error elimination

	Error description	Measures
1.	The unit permanently indicates overflow.	- The input has a very high measurement, check the measuring circuit. - The input is open.
2.	The unit permanently shows underflow.	- The input has a very low measurement, check the measuring circuit. - The input is open.
3.	The word HELP lights up in the 7-segment display.	- The unit has found an error in the configuration memory. Perform a reset on the default values and reconfigure the unit according to your application.
4.	Program numbers for parameterising of the input are not accessible.	- Programming lock is activated - Enter correct code
5.	Err1 lights up in the 7-segment display	- Please contact the manufacturer if errors of this kind occur.
6.	The device does not react as expected.	- If you are not sure if the device has been parameterised before, then follow the steps as written in chapter 6. and set it back to its delivery status.

