User manual IM3

Strain gauge amplifier - weighing technology

Technical features:

- red display of -19999... 99999 digits (optional: green, orange or blue display)
- installation depth: 120 mm without plug-in terminal
- min/max memory
- 30 parameter driven setpoints
- optical threshold value indication at threshold value exceedance / undercut
- [O]-key for triggering of Hold, Tara or sensor alignment
- digital input for triggering of Hold, Tara or sensor alignment
- permanent min/max-value recording
- sensor alignment with integrated switching output
- mathematical functions like e.g. reciprocal value, square root, squaring or rounding
- sliding averaging
- brightness control
- programming interlock via access code
- protection class IP65 at the front
- plug-in terminal
- option: 1 or 2 analog outputs
- option: 2 or 4 relay outputs or 8 PhotoMos outputs
- option: interface RS232 or RS485
- accessories: PC-based configuration kit PM-TOOL incl. CD and USB-adapter for devices without keypad an for a simple adjustment of standard devices

Identification

STANDARD-TYPES	ORDER NUMBER
Strain gauge - weighing technology Housing size: $96 \times 48 \mathrm{~mm}$	IM3-1WR5B.020X.S70BD
IM3-1WR5B.020X.W70BD	

Options - break-down product key:

Please state physical unit by order, e.g. kg.

Contents

1. Brief description 2
2. Assembly 3
3. Electrical connection 4
4. Function description and operation 5
4.1. Programming software PM-TOOL 6
5. Setting up the device 7
5.1. Switching on 7
5.2. Standard parameterisation (flat operation level) 7
Value assignment for the triggering of the signal input
5.3. Programming interlock ..RUM" 10
Activation/Deactivation of the programming interlock or change into professional or flat operation level
5.4. Extended parametersation (professional operation level) 11
5.4.1. Signal input parameters „IMP" 11
Value assignment for the triggering of the signal input incl. linearisation
5.4.2. General device parameters „FCT" 14
Superior device functions like Hold, Tara, min/max permanent, averaging, brightness control, as well as the control of the digital input and keyboard layout
5.4.3. Safety parameters „COD" 18
Assignment of user and master code to lock or to receive access to defined parameter such as analog output and alarms, etc.
5.4.4. Serial parameters „SER" 19Parameter for interface definition
5.4.5. Analog output parameters „OUT" 20Analog output functions
5.4.6. Relay functions „REL" 23
Parameter for setpoint definition
5.4.7. Alarm parameters „RLI...RLY" 25
Actuator and dependencies of the alarms
6. Reset to factory settings 27Reset parameters onto the delivery state
7. Alarms / Relays 28
Functional principle of the switching outputs
8. Interfaces 29
Connection RS232 and RS485
9. Sensor aligment 30
Diagram of functional sequences for sensors with existing adjustable resistor
10. Technical data 31
11. Safety advices 33
12. Error elimination 34

1. Brief description

The panel meter IM3-1W is a 5-digit device for connection to a 4-wire-measuring bridge and a visual threshold value monitoring via the display. The configuration happens via 4 front keys or via the optional PC software PM-TOOL. An integrated programming interlock prevents unrequested changes of the parameters and can be unlocked again by an individual code. The following functions are available: a 10 V bridge feeding, a digital input for the triggering of Hold (Tara), two analog outputs, one interface, as well as 2,4 or 8 galvanic isolated setpoints, by which free adjustable threshold values can be controlled and reported to a superior master display.
The electrical connection is carried out on the back side via plug-in terminals.
Selectable functions like e.g. the request of the min/max-value, an average determination of the measuring signals, a direct change of threshold value in operation mode and additional measuring supporting points for linearisation complete the modern device concept.

2. Assembly

Please read the Safety advices on page 33 before installation and keep this user manual for future reference.

1. After removing the fixing elements, insert the device.
2. Check the seal to make sure it fits securely.
3. Click the fixing elements back into place and tighten the clamping screws by hand. Then use a screwdriver to tighten them another half a turn.

CAUTION! The torque should not exceed 0.1 Nm !

The dimension symbols can be exchanged before installation via a channel on the side!

3. Electrical connection

Type IM3-1WR5B.020X.W70BD supply 10-40 VDC, galv. Isolated, 18-30 VAC Type IM3-1WR5B.020X.S70BD supply 100-240 VAC, DC $\pm 10 \%$

Options:

8 PhotoMos-outputs

Alternative for analog output 2

Interface RS232

Interface RS485

M3 with digital input in combination with 24 VDC sensor supply

Digital supply $10-30$ VDC

M3 with digital input and external voltage source

4. Function and operation description

Operation

The operation is divided into three different levels.
Menu level (delivery status)
This level was designed for the standard settings of the device. Only menu items which are sufficent to set the device into operation are displayed. To get into the professional level, run through the menu level and parameterise PROF under menu item RUM.

Menu group level (complete function volume)
Suited for complex applications as e.g. linkage of alarms, setpoint treatment, totaliser function etc. In this level function groups which allow an extended parameterisation of the standard settings are availabe. To leave the menu group level, run through this level and parameterise ULOC under menu item RUM.

Parameterisation level:

Parameter deposited in the menu item can here be parameterised. Functions, that can be changed or adjusted, are always signalised by a flashing of the display. Settings that are made in the parameterisation level are confirmed with [P] and thus saved. Pressing the [O]-key it leads to a break-off of the value input and to a change into the menu level. All adjustments are saved automatically by the device and changes into operating mode, if no further key operation is done within the next 10 seconds.

Level	Key	Description
Menu-level	P	Change to parameterisation level and deposited values.
	$\triangle \square$	Keys for up and down navigation in the menu level.
	O	Change into operation mode.
Parameterisationlevel	P	To confirm the changes made at the parameterization level.
	$\triangle \square$	Adjustment of the value / the setting.
	0	Change into menu level or break-off in value input.
Menu-group-level	P	Change to menu level.
	$\triangle \square$	Keys for up and down navigation in the menu group level.
	O	Change into operation mode or back into menu level.

Function chart:

Underline:

P Takeover
(O) Stop
(Value selection (+)
V Value selection (-)

4.1 Parameterisation software PM-TOOL:

Part of the PM-TOOL are the software on CD and an USB-cable with device adapter. The connection happens via a 4-pole micromatch-plug on the back side of the device, to the PC-side the connection happens via an USB plug.

System requirements: PC incl. USB interface
Software: Windows XP, Windows VISTA
With this tool the device configuration can be generated, omitted and saved on the PC. The parameters can be changed via the easy to handle program surface, whereat the operating mode and the possible selection options can be preset by the program.

5. Setting up the device

5.1. Switching on

Once the installation is complete, start the device by applying the voltage supply. Before, check once again that all electrical connections are correct.

Starting sequence

For 1 second during the switching-on process, the segment test (88888) is displayed followed by an indication of the software type and, after that, also for 1 second the software version. After the starting sequence, the device switches to operation/display mode.

5.2. Standard parameterisation: (Flat operation level)

To parameterise the display, press the [P]-key in operating mode for 1 second. The display then changes to the menu level with the first menu item TYPE.
Menu level

Menu level	Parameterisation level
	Setting up the display time， $5 E C$ ： Default： 1.0 \square Dロ！ \square 10.5 The display time is set with［ \mathbf{A} ］［ $\mathbf{\nabla}$ ］．The display moves up in increments of 0.1 up to 1 second and in increments of 1.0 up to 10.0 seconds．Confirm the selection by pressing the $[\mathrm{P}]$ button． The display then switches back to the menu level again．
	Special function［O］－key，TRST．4： Default：MO For the operation mode，special functions can be deposited on the［O］－key．This function is activated by pressing the key．With TRRR the display is tared to zero und saved permanently as offset．The device acknowledges the correct taring with showing 00000 in the display．SET．TR switches into the offset value and can thus be changed via the navigation keys［ $\mathbf{\Delta}$ ］［ $\mathbf{\nabla}$ ］．EHT．RE deletes the min／max memory．RCTUR shows the measurand，then the display changes onto the parameterised display value．The same goes for $\boldsymbol{R V G}$ ，here the sliding average value is displayed．If $H O L D$ has been selected，the moment can be hold constant by pressing the［O］－key and is updated by releasing the key．Advice：HOLD was activated only，if HOLD was selected under parameter DISPL．If RBS．UR（absolute value）was selected，the display shows the values that have been measured since the voltage has been connected，without consideration of a previous taring．With T．TRRA（temporarily Tara）the offset is determined by rising shoulder of the digital input and kept only for the period of the signal．Via SE．CRL a sensor calibration is done by pushing the zero－key，the flow diagram is shown in chapter 9．At RL－7．．．RL－8 an output can be set and therewith e．g．a switch of the metering point can be done．If $M O$ was selected，the［O］－key is without any function in the operation mode．
	Special function digital input，DIG．IM： Default：SE．CRL The above given parameters can be set for the operation mode onto the optional digital input aswell．See function description TRST．Ч．

Menu level	Parameterisation level
	Selection of analog output, out.RR: Default: 4-20 Three output signals are available: $0-10$ VDC, $0-20 \mathrm{~mA}$ and $4-20 \mathrm{~mA}$, with this function, the demanded signal is selected.
	Setting up the final value of the analog output, oUT.EM: Default: 10000 The final value is adjusted from the smallest digit to the highest digit with [$\mathbf{\Delta}$][\mathbf{V}] and digit by digit confirmed with [P]. A minus sign can only be parameterised on the highest digit. After the last digit, the device changes back into menu level.
BLE.BF	Setting up the initial value of the analog output, out.of: Default: 00000 The final value is adjusted from the smallest digit to the highest digit with [$\mathbf{\Delta}$][\mathbf{V}] and digit by digit confirmed with [P]. A minus sign can only be parameterised on the highest digit. After the last digit, the device changes back into menu level.
$\begin{aligned} & \begin{array}{\|c\|l\|l\|} \hline L & I-i \\ \uparrow \nabla & \Delta \end{array} \end{aligned}$	Threshold values / limits, LI-T: Default: 2000 This value defines the threshold, that activates/deactivates an alarm.
$\begin{aligned} & H \exists-\boldsymbol{H} \mid \\ & \|\nabla \Delta\| \end{aligned}$	Hysteresis for limit values, Hy -l: Default: 00000 The delayed reaction of the alarm is the difference to the threshold value, which is defined by the hysteresis.

Menu level	Parameterisation level
	Function for threshold value undercut $/$ exceedance, $F U-1$: Default: HIGH HILH Laus \square A limit value undercut is selected with LOUU (for LOW = lower limit value), a limit value exceedance with HIGH (for HIGH = higher limit value). If e.g. limit value 1 is on a threshold leve of 100 and allocated with function H HH, an alarm is activated by reaching of the threshold level If the threshold value was allocated to LOW, an alarm will be activated by undercutting the threshold value, as long as the hysteresis is zero.
	The same applies to L-z !
$\begin{aligned} & \text { HIVGGE } \\ & \|\nabla \triangle \Delta\| \end{aligned}$	User code (4-digit number-combination, free available), U.CODE: Default: 0000 If this code was set (>0000), all parameters are locked for the user, if $L O C$ has been selected before under menu item RUM. By pressing [P] for 3 seconds in operation mode, the display shows $C O D E$. The U.CODE needs to be entered to get to the reduced number of parameter sets. The code has to be entered befor each parameterisation, until the R.CODE (master code) unlocks all parameters again.
RLDGE	Master code (4-digit number-combination, free available), R.CODE: Default: 1234 All parameters can be unlocked with this code, after LOC has been activated under menu item RUM. By pressing [P] for 3 seconds in operation mode, the display shows CODE and enables the user to reach all parameters by entering the R.CODE. Under RUM the parameterisation can be activated permanently by selecting ULOC or PROF, thus at an anew pushing of [P] in operation mode, the code needs not to be entered again.
5.3. Programming interlock „RUM"	
	Activation I deactivation of the programming lock or completion of the standard parameterisation with change into menu group level (complete function range), RUM: Default: ULOC $\text { ULDC } \triangle \square \text { LDL } \Delta \text { PraF } \triangle \mathbb{V}$ With the navigation keys [$\mathbf{\Delta}$] [$\mathbf{\nabla}$], choose between the deactivated key lock ULOC (works setting) and the activated key lock LOC, or the change into the menu group level PROF. Confirm the selection with [P]. After this, the display confirms the settings with ". . . . -", and automatically switches to operating mode. If LOC was selected, the keyboard is locked. To get back into the menu level, press [P] for 3 seconds in operating mode. Now enter the CODE (works setting 1234) that appears using [$\mathbf{\Delta}$] [\mathbf{V}] plus [P] to unlock the keyboard. FRIL appears if the input was wrong. To parameterise further functions PROF needs to be set. The device confirms this setting with „- . - -, and changes automatically in operation mode. By pressing [P] for approx. 3 seconds in operation mode, the first menu group IMP is shown in the display and thus confirms the change into the extended parameterisation. It stays activated as long as ULOC or LOC is entered in menu group RUM.

5.4. Extended parametrisation (Professional operation level)

5.4.1. Signal input parameters

Set the end value from the smallest to the highest digit with [$\mathbf{\Delta}$] [$\boldsymbol{\nabla}$] and confirm each digit with [P]. A minus sign can only be parameterized on the highest value digit. After the last digit, the display switches back to the menu level. If SENS was selected as input option, you can only select between MOCR and CRL. With MOCR, only the previously set display value is taken over, and with CRL, the device takes over both the display value and the analogue input value.

Setting up the measuring range start/offset value, OFFS:
Default: 0

Enter the start/offset value from the smallest to the highest digit with [$\mathbf{\Delta}$] [$\boldsymbol{\nabla}$] and confirm each digit with [P]. After the last digit the display switches back to the menu level. If SEMS was selected as input option, one can only select between MOCR and CRL. With MOCR, only the previously set display value is taken over, and with CRL, the device takes over both the display value and the analogue input value.

Setting the decimal point, DOT:
Default: 0

The decimal point on the display can be moved with [$\mathbf{\Delta}$] [$\mathbf{\nabla}$] and confirmed with [P]. The display then switches back to the menu level again.

Menu level	Parameterisation level
	Display values for setpoints, 815.01 ... D15.30: Under this parameter setpoints are defined according to their value. At the sensor calibration, like at final value/offset, one is asked at the end if a calibration shall be activated.
$\begin{array}{lll\|} \hline i & \pi & \square \\ \mid \nabla & \Delta \end{array}$	Analog values for setpoints, IMP.O1 ... IMP.30: The setpoints are always set according to the selected input signal. The desired analog values can be freely parameterised in ascending order.
	Device undercut, DIUUMD: Default: -19999 With this function the device undercut (____) can be defined on a definite value. Exception is input type 4-20 mA, it already shows undercut at a signal $<1 \mathrm{~mA}$, so a sensor failure is marked.
	Display overflow, DI.OUE: Default: 99999 With this function the display overflow (${ }^{(----)}$) can be defined on a definite value.
	Input variable of process value, sIG.IM: Default: R.MERS RTERS \square 7.bu5 \square With this parameter, the device can be controlled via the analog input signals R.MEAS $=\mathbf{m V} / \mathbf{V}$ or via the digital signals of the interface m. $B U 5=$ RS232/RS485 (Modbus protocol). With [P] the selection is confirmed and the device changes into menu level.
	Back to menu group level, RET: With [P] the selection is confirmed and the device changes into menu group level ..-IMP-".

5.4.2. General device parameters

Menu level	Parameterisation level
	Assignment (deposit) of key functions, TAST: Default: MO For the operation mode, special functions can be deposited on the navigation keys [\mathbf{A}] [\mathbf{V}], in particular this function is made for devices in housing size $48 \times 24 \mathrm{~mm}$ which do not have a 4th key ([O]-key). If the min/max-memory was activated with EHTR, all measured min/max-values are saved during operation and can be recalled via the navigation keys. The values get lost by restart of the device. If the threshold value correction $L 1.22$ or $L 1.34$ is choosen, the values of the threshold can be changed during operation without disturbing the operating procedure. With TRRR the device is tared to zero and saved permanently as offset. The device confirms the correct taring by showing $\mathbf{0 0 0 0 0}$ in the display. SET.TR switches into the offset value and can be changed via the navigation keys [$\mathbf{4}$] [$\mathbf{\nabla}$]. The configuration of EHT.RE deletes the min/maxmemory. Under ACTUR the current measurand is shown (by pushing the button) and under RBS.UR the absolute value is displayed. If $A B S$.UR (absolute value) was selected, the display shows the value that has been measured since voltage connection, without consideration of a previous taring. If $M D$ is selected, the navigation keys are without any function in the operation mode.
$\begin{aligned} & \operatorname{LRSLU} 4 \\ & \|\nabla \Delta\| \end{aligned}$	Special function [O]-key, TRST.Ч: Default: MO For the operation mode, special functions can laid be on the [O]-key. This function is triggered by pushing the key. With TRRR the display is tared to zero and is saved permanently as offset. The display confirms the correct taring by showing 00000 in the display. SET.TR switches into the offset value and can be change via the direction keys [$\mathbf{\Delta}$] [$\mathbf{\nabla}$]. EHT.RE deletes the min/maxmemory. actur shows the measuring value. Then the display switches to the parameterised display value. The same goes for $A V G$, here the sliding average value is displayed. With selected HOLD the instant value is held by pushing the [0]-key and updated by releasing the key. Advice: HOLD can only be activated if HOLD was selected under parameter DISPL. If RBS.UR (absolute value) was selected, the display shows the values that have been measured since the voltage has been connected, without consideration of a previous taring. With T.TRRR (temporarily Tara) the offset is determined by rising shoulder of the digital input and kept only for the period of the signal. Via SE.CRL a sensor calibration is done by pushing the zero-key, the flow diagram is shown in chapter 4.4. At RL-1..RL-8 an output can be set and therewith e.g. a switch of the metering point can be done. If $M O$ is selected, the [O]-key has no function in the operation mode.

Menu level	Parameterisation level
	Special function digital input, DIG.IM: Default: MO For the operation mode, the above shown parameters can be laid on the optional digital input, too. Functions description see TRST.4.
$\begin{aligned} & \square-E L \\ & \|\nabla \Delta\| \end{aligned}$	Back to menu group level, RET: With [P] the selection is confirmed and the device changes into menu group level .,-FCT-".

5.4.3. Safety parameters

5.4.4. Serial parameters

5．4．5．Analog output parameters for analog output 1

Menu level	Parameterisation level
$\begin{aligned} & \text { BLLPL } \\ & \|\nabla \Delta\| \end{aligned}$	Selection reference of analog output，OUTPT： Default：RCTUR The analog output signal can refer to different functions，in detail these are the current measurand，the min－value，the max－value，the sliding average value or the absolute value．If HOLD is selected，the signal of the analog output will be kept．It can be continued processing after a deactivation of $H O L D$ ．With $[P]$ the selection is confirmed and the device changes into menu level．
	Selection analog output，OUT．RR： Default：4－20 Three output signals are available 0－10 VDC，0－20 mA and 4－20 mA．Select the desired signal with this function．
BuLEE $\uparrow \nabla$	Setting the final value of the analog output，OUT．EM： Default： 10000 The final value is adjusted from the smallest to the highest digit with［ $\mathbf{\Delta}$ ］［ \mathbf{V} ］and confirmed digit per digit with［P］．A minus sign can only be parameterised on the highest digit．After the last digit the device changes back into menu level．
	Setting the initial value of the analog output，out．OF： Default： 00000 The initial value is adjusted from the smallest to the highest digit with［ \mathbf{A} ］［ \mathbf{V} ］and confirmed digit per digit with $[\mathrm{P}]$ ．A minus sign can only be parameterised on the highest digit．After the last digit the device changes back into menu level．

Menu level	Parameterisation level	
$\begin{aligned} & \square F L \square \\| \\ & \|\nabla \Delta\| \end{aligned}$	Overflow behaviour, O.FLOU: Default: EDGE To recognise and evaluate faulty signals, e.g. by a controller, the overflow behaviour of the analog output can be defined. As overflow can be seen either $E D G E$, that means the analog output runs on the set limits e.g. 4 and 20 mA , or TO.OFF (input value smaller than initial value, analog output switches on e.g. 4 mA), TO.END (higher than final value, analog output switches on e.g. 20 mA). If $T 0 . \mathrm{MII}$ or TO.MRX is set, the analog output switches on the smallest or highest possible binary value. This means that values of e.g. $0 \mathrm{~mA}, 0 \mathrm{VDC}$ or values higher than 20 mA or 10 VDC can be reached. With [P] the selection is confirmed and the device changes into menu level.	
$\begin{aligned} & \begin{array}{\|c\|} \hline r E t \\ \uparrow \nabla \Delta \mid \end{array} \end{aligned}$	Back to menu group level, RET: With [P] the selection is confirmed and the device changes into menu group level ..-OUT-".	

Analog output parameters for analog output 2

Menu level | Parameterisation level |
| :--- |
| Selection reference of analog output, OUZ.PT: |
| Default: ACTUR |

| Menu level | Parameterisation level |
| :--- | :--- | :--- |
| Selection analog output, ouv.Ra: | |
| Default: 4-20 | |

5.4.6. Relay functions

Menu level	Parameterisation level			
	Alerting rela Default：RL－5 LQU｜ Each setpoin at activated available in the other selecte activated／dea front of the de	5，REL－5： $R L-$ BF （optional）can be linke arms RLI／4 or deactiva menu level LOG－1 and functions，these two p tivated，in this case tha vice．With［P］the selec	RL-n5 RL-nB meters are overleaped．Via OM／DFF the setpoints can be output and the setpoint display are set／not set on the is confirmed and the device changes into menu level．	
$\begin{gathered} \operatorname{La\\| }-5 \\ \|\nabla \Delta\| \end{gathered}$	Logic relay 5 Default： 0 R \square Here，the sw describes the LOGIC was sele	LOG－5： ching behavior of the e functions with inclu ted under REL－I．	ay is defined via a logic link，the following schema RL－ 1 and RL－2：This parameter can only be selected if	
	$\square 10$	A1 v A2	As soon as a selected alarm is activated，the relay operates．Equates to operating current principle．	
	のロー	$\overline{A 1 \vee A 2}=\overline{A 1} \wedge \overline{A 2}$	The relay operates only，if no selected alarm is active．Equates to quiescent current principle．	
	\boldsymbol{R}	A1 \wedge a2	The relay operates only，if all selected alarms are active．	
	のワワロ	$\overline{A 1 \wedge A 2}=\overline{A 1} \vee \overline{A 2}$	As soon as a selected alarm is not activated，the relay operates．	
	With［P］the selection is confirmed and the device changes into menu level．			
$\begin{aligned} & \text { EaIT } 5 \\ & \|\nabla \Delta\| \end{aligned}$	Alarms for r Default： 8.5 R． 5 The allocation group of alar under REL－l．W	ay 5，com－5： R． 5 of the alarms to the s s can be chosen．This ［ P$]$ the selection is	ted group happens via this parameter，one alarm or a parameter can only be selected if LOGIC was selected irmed and the device changes into menu level．	
$\begin{aligned} & \square \sim E L \\ & \nabla \Delta \square \end{aligned}$	Back to menu group level，RET：With［P］the selection is confirmed and the device changes into menu group level ．．－REL－＂．			

5.4.7. Alarm parameters

Menu level | Parameterisation level |
| :--- |

Menu level	Parameterisation level
$\begin{array}{\|l\|l\|l\|} \hline L & I & - \\ \hline \boldsymbol{A} & \Delta \end{array}$	Threshold values / limit values, LI-T: Default: 2000 The limit value defines the threshold, that activates/deactivates an alarm.
$\begin{array}{\|l\|} \hline H B-i \\ \|\nabla \Delta\| \end{array}$	Hysteresis for threshold values, HY -l: Default: 00000 \square \square P \square P \square \square The delayed reaction of the alarm is the difference to the threshold value, which is defined by the hysteresis.
$\begin{aligned} & F_{\omega}-i \\ & \|\nabla \Delta\| \end{aligned}$	Function for threshold value undercut $/$ exceedance, $F U-$: Default: $\boldsymbol{H I G H}$ HIEH Laub A limit value undercut is selected with LOUU (for LOW = lower limit value), a limit value exceedance with HIGH (for HIGH = higher limit value). If e.g. limit value 1 is on a threshold level of 100 and allocated with function $H I G H$, an alarm is activated when reaching the threshold level. If the threshold value was allocated to LOU, an alarm will be activated by undercutting the threshold value, as long as the hysteresis is zero.
$\begin{aligned} & \operatorname{Lan}-\boldsymbol{I} \\ & \|\nabla \Delta\| \end{aligned}$	Switching-on delay, TOM-7: Default: 000 For limit value 1 one can preset a delayed switching-on of 0-100 seconds.
$\begin{aligned} & \text { EaF-i } \\ & \|\nabla \Delta\| \end{aligned}$	Switching-off delay, TOF-7: Default: 000 For limit value 1 one can preset a delayed switching-off of $0-100$ seconds.
$\begin{aligned} & \square \\ & \hline-E L \\ & \|\nabla \Delta\| \end{aligned}$	Back to menu group level, RET: With $[P]$ the selection is confirmed and the device changes into menu group level ..-RLI-".

The same applies for Al2 to al8.

Programming interlock, RUM:

6. Reset to factory settings

To return the unit to a defined basic state, a reset can be carried out to the default values.
The following procedure should be used:

- Switch off the power supply
- Press [P]-button
- Switch on voltage supply and press [P]-button until ..-...-" is shown in the display.

With reset, the default values of the program table are loaded and used for subsequent operation. This puts the unit back to the state in which it was supplied.

Caution! All application-related data are lost.

7. Alarms / Relays

This device has 4 virtual alarms that can monitor one limit value in regard of an undercut or exceedance. Each alarm can be allocated to an optional relay output S1-S4; furthermore alarms can be controlled by events like e.g. Hold or min/max-value.

Function principle of alarms / relays	
Alarm / Relay \mathbf{x}	Deactivated, instantaneous value, min/max-value, hold-value, sliding average value or an activation via the digital input
Switching threshold	Threshold / limit value of the change-over
Hysteresis	Broadness of the window between the switching thresholds
Working principle	Operating current / Quiescent current

Operating current

By operating current the alarm S1-S4 is off below the threshold and on on reaching the threshold.

Quiescent current

By quiescent current the alarm S1-S4 is on below the threshold and switched off on reaching the threshold.

Switching-on delay

The switching-on delay is activated via an alarm and e.g. switched 10 seconds after reaching the switching threshold, a shortterm exceedance of the switching value does not cause an alarm, respectively does not cause a switching operation of the relay. The switching-off delay operates in the same way, keeps the alarm / the relay switched longer for the parameterised time.

8. Interfaces RS232 and RS485

Connection RS232

Digital device M3 PC - 9-pole Sub-D-plug

Connection RS485

Digital device M3

The interface RS485 is connected via a screened data line with twisted wires (Twisted-Pair). On each end of the bus segment a termination of the bus lines needs to be connected. This is neccessary to ensure a secure data transfer to the bus. For this a resistance (120 Ohm) is interposed between the lines Data B (+) and Data A (-).

9. Sensor alignment offset / final value

The device has an automatic calibration at mass pressure sensors, where an integrated switching output operates an often available 80% calibration. Like this offset and final value are adjusted, and the sensor can be applied directly after this. The calibration can be done via the 4th key or the digital input, depending on the parameterisation.

If a special input range SENS.l, SENS.2, SEN5. 3 was selected under TYPE, a checking of the range is done for offset and final value. At an undercut/exceedance of $\pm 20 \%$ of adjustment range, an C.FRIL is given out.

10. Technical data

Housing	
Dimensions	$96 \times 48 \times 120 \mathrm{~mm}$ (BxHxD)
	$96 \times 48 \times 139 \mathrm{~mm}(\mathrm{BxHxD})$ incl. plug-in terminal
Panel cut-out	$92.0^{+0,8} \times 45.0^{+0,6} \mathrm{~mm}$
Wall thickness	to 15 mm
Fixing	screw elements
Material	PC Polycarbonate, black, UL94V-0
Sealing material	EPDM, 65 Shore, black
Protection class	standard IP65 (front), IP00 (back side)
Weight	approx. 300 g
Connection	plug-in terminal; wire cross section up to $2.5 \mathrm{~mm}^{2}$
Display	
Digit height	14 mm
Segment colour	red (optional blue/green/orange)
Range of display	-19999 to 99999
Setpoints	one LED per setpoint
Overflow	horizontal bars at the top
Underflow	horizontal bars at the bottom
Display time	0.1 to 10.0 seconds
Input	
Sensor sensitivity	$1 \mathrm{mV} / \mathrm{V}, 2 \mathrm{mV} / \mathrm{V}$, $3.3 \mathrm{mV} / \mathrm{V}$, free up to $4 \mathrm{mV} / \mathrm{V}$
Measuring error	0.2% of measuring range in electromagnetic dominated environment, 1% of measuring range in industrial invironment with strong disturbing source
Digital input	$\begin{aligned} & <24 \mathrm{~V} \text { OFF, >10 V ON, max. } 30 \mathrm{VDC} \\ & \mathrm{R}_{\mathrm{I}} \sim 5 \mathrm{k} \Omega \end{aligned}$
Sensor calibration	always required
Accuracy	
Temperature drift	100 ppm / K
Measuring time	0.1... 10.0 seconds
Measuring principle	U/F-converter
Resolution	approx. 18 bit at 1s measuring time, $3.3 \mathrm{mV} / \mathrm{V}$ measuring range
Output	
Analog output	0/4-20 mA / burden $\leq 500 \Omega$ or 0-10 VDC / $\geq 10 \mathrm{k} \Omega, 16$ bit
Bridge supply	$10 \mathrm{VDC} / 20-40 \mathrm{~mA} / 250-500 \Omega$

Switching outputs	
Relay with change-over contacts Switching cycles	250 VAC / 5 AAC; 30 VDC / 5 ADC 30×10^{3} at 5 AAC, 5 ADC ohm resistive load 10×10^{6} mechanically Diversity according to DIN EN50178 / Characteristics according to DIN EN60255
PhotoMos outputs	8 normally open (NO) contacts $30 \mathrm{VDC/AC}, 0.4 \mathrm{~A}$
Interface	
Protocol	Modbus with ASCII or RTU-protocol
RS232	9.600 Baud, no parity, 8 databit, 1 stopbit, wire length max. 3 m
RS485	9.600 Baud, no parity, 8 databit, 1 stopbit, wire length max 1000 m
Power supply	100-240 VAC $50 / 60 \mathrm{~Hz}, \mathrm{DC} \pm 10 \%$ (max. 15 VA) $10-40$ VDC, $18-30$ VAC $50 / 60 \mathrm{~Hz}$ (max. 15 VA)
Memory	EEPROM
Data life	≥ 100 years at $25^{\circ} \mathrm{C}$
Ambient conditions	
Working temperature	0...50 ${ }^{\circ} \mathrm{C}$
Storing temperature	$-20 . .80^{\circ} \mathrm{C}$
Climatic density	relative humidity 0-80\% on years average without dew
EMV	EN 61326
CE-sign	Conformity to directive 2014/30/EU
Safety standard	According to low voltage directive 2014/35/EU EN 61010; EN 60664-1

11. Safety advices

Please read the following safety advices and the assembly chapter 2 before installation and keep it for future reference.

Proper use

The IM3-1W-device is designed for the evaluation and display of sensor signals.

Danger! Careless use or improper operation can result in personal injury and/or cause damage to the equipment.

Control of the device

The panel meters are checked before dispatch and sent out in perfect condition. Should there be any visible damage, we recommend close examination of the packaging. Please inform the supplier immediately of any damage.

Installation

The IM3-1W-device must be installed by a suitably qualified specialist (e.g. with a qualification in industrial electronics).

Notes on installation

- There must be no magnetic or electric fields in the vicinity of the device, e.g. due to transformers, mobile phones or electrostatic discharge.
- The fuse rating of the supply voltage should not exceed a value of 0.5 A N.B. fuse!
- Do not install inductive consumers (relays, solenoid valves etc.) near the device and suppress any interference with the aid of RC spark extinguishing combinations or free-wheeling diodes.
- Keep input, output and supply lines separate from one another and do not lay them parallel with each other. Position "go" and "return lines" next to one another. Where possible use twisted pair. So, you receive best measuring results.
- Screen off and twist sensor lines. Do not lay current-carrying lines in the vicinity. Connect the screening on one side on a suitable potential equaliser (normally signal ground).
- The device is not suitable for installation in areas where there is a risk of explosion.
- Any electrical connection deviating from the connection diagram can endanger human life and/or can destroy the equipment.
- The terminal area of the devices is part of the service. Here electrostatic discharge needs to be avoided. Attention! High voltages can cause dangerous body currents.
- Galvanic isolated potentials within one complex need to be placed on an appropriate point (normally earth or machines ground). So, a lower disturbance sensibility against impacted energy can be reached and dangerous potentials, that can occur on long lines or due to faulty wiring, can be avoided.

12. Error elimination

	Error description	Measures
1.	The unit permanently indicates overflow.	- The input has a very high measurement, check the measuring circuit. - With a selected input with a low voltage signal, it is only connected on one side or the input is open. - Not all of the activated setpoints are parameterised. Check if the relevant parameters are adjusted correctly. - An absolutely incorrect alignment has been done bevor, e.g. without connected sensor. In this case a reset to the factory setting should be carried out.
2.	The unit permanently shows underflow.	- The input has a very low measurement, check the measuring circuit. - With a selected input with a low voltage signal, it is only connected on one side or the input is open. - Not all of the activated setpoints are parameterised. Check if the relevant parameters are adjusted correctly. - An absolutely incorrect alignment has been done bevor, e.g. without connected sensor. In this case a reset to the factory setting should be carried out.
3.	The word HELP lights up in the 7-segment display.	- The unit has found an error in the configuration memory. Perform a reset on the default values and reconfigure the unit according to your application.
4.	Program numbers for parameterising of the input are not accessible.	- Programming lock is activated - Enter correct code
5.	ERRI lights up in the 7-segment display	- Please contact the manufacturer if errors of this kind occur.
6.	The device does not react as expected.	- If you are not sure if the device has been parameterised before, then follow the steps as written in chapter 6. and set it back to its delivery status.

