Extractive continuous process gas analysis

SIPROCESS GA700

Overview

The function of the OXYMAT 7 module is based on the paramagnetic alternating pressure method and is used to measure oxygen in gases.

Benefits

Paramagnetic alternating pressure principle

- Small measuring ranges (0 to 0.5% or 99.5 to $100 \% \mathrm{O}_{2}$)
- Absolute linearity

Detector element has no contact with the sample gas

- Applicable in the absence of corrosive sample gases
- Long service life

Physically suppressed zero point possible, e.g. in the measuring range 98% or 99.5% to $100 \% \mathrm{O}_{2}$
Ex (p) for Zones 1 and 2 according to ATEX-/IECEx approval, introduction of flammable gases possible

Application

Application areas

- For boiler control in incineration plants
- In chemical plants
- For ultra-pure gas quality monitoring
- In environmental protection
- For quality control
- Purity control/air separator
- Versions for analyzing flammable and non-flammable gases or vapors for use in hazardous areas

Design

[^0]
Extractive continuous process gas analysis

 SIPROCESS GA700

Structure of high-pressure version, field module, sample gas path with pipes

Gas path

High-pressure version with optional pressure switch for monitoring reference gas pressure

Reference gas pressure

Sample gas pressure

- With hoses
- With pipes

Sample gas path

2000 ... 4000 hPa above sample gas pressure, but max. 5000 hPa
$500 \ldots 1500 \mathrm{hPa}$ (abs.)
$500 \ldots 2500 \mathrm{hPa}$ (abs.) with internal pressure sensor
500 ... 3000 hPa (abs.) with external pressure sensor

With hoses or with pipes

1 Sample gas inlet
2 Sample gas outlet
3 N. C.
4 Reference gas inlet
5 Sample gas restrictor

6 Pressure sensor p for sample gas pressure
7 Analyzer unit
8 Reference gas restrictor
10 Pressure switch for reference gas monitoring (optional)
11 Reference gas fine filter

Low-pressure version with external reference gas pump

Reference gas pressure

Sample gas pressure
Sample gas path
Reference gas path

100 hPa above the sample gas pressure (low-pressure version) for the connection of an external pump
Atmospheric pressure $\pm 50 \mathrm{hPa}$
With hoses
With hoses

Gas path plan, low-pressure with external reference gas pump, with hoses

Extractive continuous process gas analysis

SIPROCESS GA700

OXYMAT 7 module

Mode of operation

Oxygen is highly paramagnetic. This outstanding property of paramagnetism is used as a physical measuring effect for oxygen analysis.
Oxygen molecules in an inhomogeneous magnetic field always move toward the higher field strength. This results in a higher oxygen concentration where the field strength is higher (higher oxygen partial pressure). If two gases with differing oxygen content are combined in a magnetic field, a (O_{2} partial) pressure difference arises between them.

Since the measuring effect is always based on the difference of the oxygen content of the two gases, one refers to the sample and reference gases.
For measuring oxygen in the OXYMAT 7 , the reference gas (N_{2}, O_{2} or air) flows through two channels into the sample chamber
(6). One of these partial flows enters the measuring chamber (7) in the area of the magnetic field. If the sample gas is $\mathrm{O}_{2}-\mathrm{free}$, the reference gas can flow out freely. If the sample gas does contain O_{2}, however, the oxygen molecules concentrate in the area of the magnetic field. The reference gas can then no longer flow off freely. An alternating pressure results between the two reference gas inlets. This pulsates in step with the magnetic field and depends on the oxygen concentration. This causes an alternating flow in the microflow sensor (4).

The microflow sensor consists of two nickel-plated grids heated to approximately $120^{\circ} \mathrm{C}$, which, along with two supplementary resistors, form a Wheatstone bridge. The alternating flow results in a change in the resistance of the nickel-plated grids. The resulting offset in the bridge is a measure of the concentration of oxygen in the sample gas.
Because the microflow sensor is located in the reference gas flow, the measurement is not influenced by the thermal conductivity, the specific heat or the internal friction of the sample gas. Additionally, the microflow sensor is protected through this arrangement from corrosion caused by the sample gas.

Further information

The oscillating magnetic field (8) means that the basic flow at the microflow sensor is not detected. The measurement is, thus, independent of the module's operating position or the position of the sample chamber.
The sample chamber is directly in the sample path and has a small volume, and the microflow sensor is a low-lag sensor. As a result, extremely short response times are realized.
Vibrations at the installation site can interfere with the measured signal (e.g. large fluctuations in the output signal). This behavior can be compensated for by a second (optional) microflow sensor (10), which functions as a vibration sensor. Since large differences in density between the sample and reference gases further amplify the undesired influence of vibration, reference gas is channeled to both the compensation microflow sensor (10) and the sample microflow sensor (4).

The sample gases must be fed into the analyzers free of dust. Condensation in the sample chambers must be prevented.
Therefore, the use of gas modified for the measuring task is necessary in most application cases.
Flowing reference gas prevents the microflow sensor from being damaged and maintains the measurement capability of the module.

OXYMAT 7, principle of operation

Extractive continuous process gas analysis

SIPROCESS GA700

Essential characteristics

Technical features
Depending on the reference gas, the physical zero point can be set between 0\% and 100\% oxygen.

- Smallest measuring spans (up to $0.5 \% \mathrm{O}_{2}$) possible
- Measuring ranges with physically suppressed zero points possible (e.g. 99.5\% to 100\%)
- Short response time
- Low long-term drift
- Monitoring of reference gas pressure with reference gas connection 2500 to 5000 hPa (abs.) (option): reference gas pressure must be $2000 \pm 150 \mathrm{hPa}$ higher than the sample gas pressure.

Features

- Internal pressure sensor for correction of pressure variations in sample gas in the range from 500 to 2500 hPa (absolute)
- External pressure sensor - only with piping as the gas path can be connected for correction of variations in the sample gas pressure up to 3000 hPa absolute (option)
- Monitoring of reference gas (option)
- Analysis part with flow-type compensation circuit as an order variant for reducing the vibration impact at the installation site
- For sample gas path with hoses: Connection cable to the pressure sensor with hoses
- Hardware adapted to application
- Customer-specific analyzer options such as:
- Clean for O_{2} service (specially cleaned gas path)
- Kalrez-6375 seals

Reference gases

Measuring range	Recommended reference gas	Reference gas connection pressure	Comments
0 to ... vol.\% O_{2}	N_{2}	$2000 \ldots 4000 \mathrm{hPa}$ above sample gas pressure (max. 5000 hPa absolute)	The reference gas flow is set automatically to $5 \ldots 10 \mathrm{ml} / \mathrm{min}$ (up to $20 \mathrm{ml} / \mathrm{min}$ with flow-type compensation branch)
... to 100 vol. $\% \mathrm{O}_{2}$ (suppressed zero point with full-scale value 100 vol. \% O_{2})	O_{2}		
Around 21 vol. \% O_{2} (suppressed zero point with 21 vol. $\% \mathrm{O}_{2}$ within the measuring span)	Air	100 hPa with respect to sample gas pressure, which may vary by max. 50 hPa around the atmospheric pressure	

Table 1: Reference gases for OXYMAT 7

Extractive continuous process gas analysis

 SIPROCESS GA700
OXYMAT 7 module

Correction of zero-point error/cross-sensitivities

Accompanying gas (concentration 100 vol. \%)	Zero point deviation in vol. $\% \mathbf{O}_{\mathbf{2}}$ absolute
Organic gases	
Ethane $\mathrm{C}_{2} \mathrm{H}_{6}$	-0.49
Ethene (ethylene) $\mathrm{C}_{2} \mathrm{H}_{4}$	-0.22
Ethine (acetylene) $\mathrm{C}_{2} \mathrm{H}_{2}$	-0.29
1.2 butadiene $\mathrm{C}_{4} \mathrm{H}_{6}$	-0.65
1.3 butadiene $\mathrm{C}_{4} \mathrm{H}_{6}$	-0.49
n-butane $\mathrm{C}_{4} \mathrm{H}_{10}$	-1.26
iso-butane $\mathrm{C}_{4} \mathrm{H}_{10}$	-1.30
1-butene $\mathrm{C}_{4} \mathrm{H}_{8}$	-0.96
iso-butene $\mathrm{C}_{4} \mathrm{H}_{8}$	-1.06
Dichlorodifluoromethane (R12) $\mathrm{CCl}_{2} \mathrm{~F}_{2}$	-1.32
Acetic acid $\mathrm{CH}_{3} \mathrm{COOH}$	-0.64
n-heptane $\mathrm{C}_{7} \mathrm{H}_{16}$	-2.40
n-hexane $\mathrm{C}_{6} \mathrm{H}_{14}$	-2.02
Cyclo-hexane $\mathrm{C}_{6} \mathrm{H}_{12}$	-1.84
Methane CH_{4}	-0.18
Methanol $\mathrm{CH}_{3} \mathrm{OH}$	-0.31
n-octane $\mathrm{C}_{8} \mathrm{H}_{18}$	-2.78
n-pentane $\mathrm{C}_{5} \mathrm{H}_{12}$	-1.68
iso-pentane $\mathrm{C}_{5} \mathrm{H}_{12}$	-1.49
Propane $\mathrm{C}_{3} \mathrm{H}_{8}$	-0.87
Propylene $\mathrm{C}_{3} \mathrm{H}_{6}$	-0.64
Trichlorofluoromethane (R11) $\mathrm{CCl}_{3} \mathrm{~F}$	-1.63
Vinyl chloride $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}$	-0.77
Vinyl fluoride $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~F}$	-0.55
1.1 vinylidene chloride $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Cl}_{2}$	-1.22

Inert gases	
Helium He	+0.33
Neon Ne	+0.17
Argon Ar	-0.25
Krypton Kr	-0.55
Xenon Xe	-1.05
Inorganic gases	-0.20
Ammonia NH_{3}	-0.76
Hydrogen bromide HBr	-0.94
Chlorine Cl_{2}	-0.35
Hydrogen chloride HCl	-0.23
Dinitrogen monoxide $\mathrm{N}_{2} \mathrm{O}$	+0.10
Hydrogen fluoride HF	-1.19
Hydrogen iodide $\mathrm{HI}^{\text {Carbon dioxide } \mathrm{CO}_{2}}$	-0.30
Carbon monoxide CO	+0.07
Nitrogen oxide NO^{2}	+42.94
Nitrogen N_{2}	0.00
Nitrogen dioxide NO_{2}	+20.00
Sulfur dioxide SO_{2}	-0.20
Sulfur hexafluoride SF_{6}	-1.05
Hydrogen sulfide $\mathrm{H}_{2} \mathrm{~S}$	-0.44
Water $\mathrm{H}_{2} \mathrm{O}$	-0.03
Hydrogen H_{2}	+0.26

Table 2: Zero point error due to diamagnetism or paramagnetism of some accompanying gases with reference to nitrogen at $60^{\circ} \mathrm{C}$ und 1000 hPa absolute (according to IEC 1207/3)

Conversion to other temperatures:
The deviations from the zero point listed in Table 2 must be multiplied by a correction factor (k):

- with diamagnetic gases: $\mathrm{k}=333 \mathrm{~K} /\left(\varphi\left[{ }^{\circ} \mathrm{C}\right]+273 \mathrm{~K}\right)$
- with paramagnetic gases: $\mathrm{k}=\left[333 \mathrm{~K} /\left(\varphi\left[{ }^{\circ} \mathrm{C}\right]+273 \mathrm{~K}\right)\right]^{2}$

All diamagnetic gases have a negative deviation from zero point.

Technical specifications

The technical specifications are based on the definitions of DIN EN 61207-1.

Unless specified otherwise, the data listed below relates to the following measurement conditions:

Ambient temperature	$25^{\circ} \mathrm{C}$
Atmospheric pressure	Atmospheric (approx. 1000 hPa)
Sample gas flow	$0.6 \mathrm{I} / \mathrm{min}$ (or NI/min)
Reference gas	Nitrogen
Site of installation	Vibration- and impact-free

General information

Weight Approx. 5.5 kg (standard version)

Measuring ranges

Number of measuring ranges
Max. 4; parameters can be assigned freely
Parameters can be assigned in the measuring ranges

- Smallest possible measuring spans $0.5 \%, 1 \%, 2 \%$ or $5 \% \mathrm{O}_{2}$
- Largest possible measuring span
$100 \% \mathrm{O}_{2}$

Gas inlet conditions

Sample gas pressure

- Standard devices with hoses
- Standard devices with hoses and ext. RG pump
- Standard devices with pipes
- Field module
- For non-combustible gases
- For combustible gases up to gas mixtures which are occasionally explosive
Reference gas pressure
- High-pressure connection

2000 hPA above sample gas pressure (within permitted reference gas pressure range 2500 to 5000 hPa , abs.)

- Low-pressure connection with exter- 100 hPa above sample gas pressure nal reference gas pump

Pressure drop between sample gas inlet and sample gas outlet
Sample gas flow
Sample gas temperature
500 ... 1500 hPa (abs.)
Atmospheric pressure $\pm 50 \mathrm{hPa}$
500 ... 3000 hPa (abs.); briefly < 5000 hPa (abs.)

100 hPa at $1 \mathrm{l} / \mathrm{min}$
$18 \ldots 60 \mathrm{l} / \mathrm{h}(0.3 \ldots 1 \mathrm{l} / \mathrm{min})$
$0 \ldots 60^{\circ} \mathrm{C}$
Sample gas humidity (rel. humidity) <90\% (condensation inside the gas path is to be avoided)
Sample chamber temperature
Standard version
Approx. $72{ }^{\circ} \mathrm{C}$

Time response

Warm-up period at room temperature
Response characteristics

- Display delay T_{90} with an electronic $\leq 1.9 \mathrm{~s} ; \leq 2.4 \mathrm{~s}$ (field module includdamping setting of 0 s and a sample ing flame arrestor)
gas flow of $1 \mathrm{Nl} / \mathrm{min}$.
- Dead time T_{10}
$\leq 1.1 \mathrm{~s} ;<1.6 \mathrm{~s}$ (field module)

Measuring response

Output signal fluctuation with static damping constant of 0 s and dynamic noise suppression of $5 \% / 10 \mathrm{~s}$

Detection limit
$\leq \pm 0.5 \%$ of smallest measuring span (noise bandwidth corresponds to 1\% $=6 \sigma$ value or $0.333 \%=2 \sigma$ value), with vibration compensation activated: < 1.5 times the value
$\leq 1 \%$ of smallest measuring span according to nameplate (with vibration compensation activated: < 1.5 times the value)

Measured-value	
- At the zero point	$\leq \pm 0.5 \%$ of the smallest span/month or $\leq \pm 50 \mathrm{vpm} \mathrm{O}_{2} /$ month, whichever is greater
- For span gas	$\leq \pm 0.5 \%$ of the current measuring span/month or $\leq \pm 50 \mathrm{vpm} \mathrm{O}_{2} /$ month, whichever is greater
Repeatability	
- At the zero point	$\leq \pm 0.5 \%$ of the smallest measuring span/month or $\leq \pm 50 \mathrm{vpm} \mathrm{O} \mathrm{O}_{2} /$ month, whichever is greater
- For span gas	$d \leq \pm 0.5 \%$ of the current measuring span/month or $\leq \pm 50 \mathrm{vpm} \mathrm{O}_{2}$, whichever is greater
Linearity error with dry ambient air ${ }^{1)}$	< 0.1\%
Influencing variables	
Ambient temperature	
- Deviation at zero point	$\leq 0.5 \%$ of the smallest measuring span / 10 K or $\leq 50 \mathrm{vpm} \mathrm{O} / 10 \mathrm{~K}$, whichever is greater
- Deviation of the span gas	$\leq 0.5 \%$ of the current measuring span / 10 K or $\leq 50 \mathrm{vpm} \mathrm{O}_{2} / 10 \mathrm{~K}$, whichever is greater
Sample gas pressure	
- Deviation at zero point	$\leq 0.2 \%$ of the smallest measuring span / 1% pressure variation or ≤ 50 vpm $\mathrm{O}_{2} / 1 \%$ pressure variation, whichever is greater
- Deviation of the span gas	$\leq 0.2 \%$ of the current measuring span $/ 1 \%$ pressure variation or $\leq 50 \mathrm{vpm}$ $\mathrm{O}_{2} / 1 \%$ pressure variation, whichever is greater
Sample gas flow	
- Deviation at zero point	$\leq 1 \%$ of smallest measuring span per $0.1 \mathrm{l} / \mathrm{min}$ change in flow or $\leq 50 \mathrm{vpm}$ O_{2} per $0.1 \mathrm{I} / \mathrm{min}$ change in flow within the permissible flow range (0.3 to $1 \mathrm{I} /$ min), whichever is greater
- Deviation of the span gas	$\leq 1 \%$ of current measuring span per $0.1 \mathrm{l} / \mathrm{min}$ change in flow or $\leq 50 \mathrm{vpm}$ O_{2} per $0.1 \mathrm{I} / \mathrm{min}$ change in flow within the permissible flow range (0.3 to $1 \mathrm{I} /$ min), whichever is greater
Accompanying gases	Zero point deviation (cross-sensitivity) in accordance with Table A. 1 of EN 61207-3
Supply voltage	$<0.1 \%$ of the current measuring span (within the nominal range of use)
Electrical inputs and outputs	
Analog and digital interfaces	See base unit
Gas connections	
Connection fittings	Pipe connection with 6 mm outer diameter
Climatic conditions	
Storage and transport	$-30 \ldots 70^{\circ} \mathrm{C}$
Permissible ambient temperature ${ }^{2)}$	$0 \ldots 50^{\circ} \mathrm{C}$
Relative humidity (RH) during storage, transport or operation	$<90 \%$ (condensation from the installed components is to be avoided)

1) Untreated ambient air contains less than $20.95 \% \mathrm{O}_{2}$ (literature value) since existing humidity of the oxygen content is decreased relatively
2) Restriction for installing together with an ULTRAMAT 7 module: $5 \ldots 45^{\circ} \mathrm{C}$

Extractive continuous process gas analysis

SIPROCESS GA700

OXYMAT 7 module

Selection and ordering data				Article No.					
OXYMAT 7 module For measurement of oxygen			\nearrow	7MB3020-	- - 0-	AA	Can com	ot be ined	
\nearrow Click on the Article No. for the onlin	onfiguration in the PIA Life Cy	le Portal.							
Module version									
Standard module (for rack mounted a	wall enclosure)				0				
Standard module for hazardous zone	rack mounted and wall enclo				2		2	2	
Field module for field housing Ex d wi	t purging gas connections				4			4	
Reference gas pressure									
Low-pressure version 100 hPa (for the	nnection of an external pump	without pressure switch)			A		A	A	A
High pressure (2000 ... 4000 hPa ab	sample gas pressure)				C				
High pressure (2000 ... 4000 hPa ab	sample gas pressure), with p	ssure switch			D				
Smallest possible measuring span									
0.5 \%					B				B
1 \%					C				C
2 \%					D				
5 \%					E				
Gas path									
Material of gas path	Material of sample chamber	Material of seal							
Hose made of FKM (Viton)	Stainless steel (1.4571)	FKM (Viton)			0			00	
Pipe made of stainless steel (1.4404)	Stainless steel (1.4571)	FKM/Ex: Kalrez (6375)			1				1
Pipe made of Hastelloy C22	Hastelloy C22	Kalrez (6375)			2				2
Vibration compensation									
Without						0		0	
With						1			
Version									
Standard						0			

Selection and ordering data

Additional versions	Order code
Add "-Z" to Article No. and specify Order code	
Settings	$\mathbf{B 0 4}$
Kalrez (6375) seals in sample gas path	$\mathbf{B 0 6}$
Clean for O_{2} service (specially cleaned gas path)	$\mathbf{Y 1 1}$
Measuring range indication in plain text, if different from the default setting	$\mathbf{Y 1 6}$
Exclusively for measuring non-toxic sample gases	$\mathbf{D 0 0} \ldots \mathbf{\text { D99 }}$
Base unit module assignment number	

Ordering example

OXYMAT 7 module installed in wall enclosure
7MB3000-3CX00-1AA0-Z+D02
7MB3020-0CE00-0AA0-Z+D02
OXYMAT 7 module and ULTRAMAT 7 installed in rack unit enclosure
7MB3000-0CB00-1AA0-Z+D05
7MB3020-0CE00-0AA0-Z+D05
7MB3010-0CA10-0AA0-Z+D05
OXYMAT 7 module and wall enclosure supplied separately
7MB3000-3CX00-1AA0
7MB3020-0CE00-0AA0

Circuit diagrams

Gas connections

[^1]Gas connections for sample gas inlet and outlet, reference gas: Fittings, 6 mm pipe diameter

1 Sample gas inlet
2 Sample gas outlet
3 Blanking plug or purging gas connection
4 Reference gas inlet
5 Breathing apparatus (pressure compensation coupling)
6 Cable bushing
7 Ground connection
The sample gas connections are made of stainless steel Mat. No. 1.4571 or Hastelloy Mat. No. 2.4819.
The reference gas connection is made of stainless steel Mat. No. 1.4571.
Gas connections are fitted with a clamping ring screw connection for 6 mm pipes.

[^2]
Extractive continuous process gas analysis

 SIPROCESS GA700
(1) Purging gas stub
(2) Slot of module 1: OXYMAT 7
(3) Slot of module 2

[^0]: Structure of high-pressure version, standard module, sample gas path with pipes

[^1]: 1 Sample gas inlet
 2 Sample gas outlet
 3 N.C., bypass outlet for version with external reference gas pump
 4 Reference gas inlet

[^2]: Gas connections of the field module

