

Process pressure transmitter IPT-2x

GΕ

4 ... 20 mA Metallic measuring cell

Process pressure transmitter IPT-2x

Contents

1	About this document				
	1.1	Function	. 4		
	1.2	Target group			
	1.3	Symbols used	. 4		
2	For your safety				
	2.1	Authorised personnel	. 5		
	2.2	Appropriate use	. 5		
	2.3	Warning about incorrect use			
	2.4	General safety instructions			
	2.5	EU conformity			
	2.6	NAMUR recommendations			
	2.7	Installation and operation in the USA and Canada	. 6		
3	Product description				
-	3.1	Configuration			
	3.2	Principle of operation			
	3.3	Supplementary cleaning procedures	11		
	3.4	Packaging, transport and storage			
4	Mounting1				
	4.1	General instructions			
	4.2	Instructions for oxygen applications	15		
	4.3	Ventilation and pressure compensation			
	4.4	Process pressure measurement			
	4.5	Level measurement			
	4.6	External housing	20		
5	Connecting to power supply21				
	5.1	Preparing the connection	21		
	5.2	Connecting	22		
	5.3	Single chamber housing	23		
	5.4	Housing IP66/IP68 (1 bar)	24		
	5.5	External housing with version IP68 (25 bar)	25		
	5.6	Switch-on phase.			
6	Set up with the display and adjustment module2				
	6.1	Adjustment system	28		
	6.2	Measured value indication.			
	6.3	Parameter adjustment - Quick setup	29		
	6.4	Parameter adjustment - Extended adjustment	30		
	6.5	Saving the parameterisation data	42		
7	Diagnostics and servicing43				
	7.1	Maintenance			
	7.2	Diagnosis function			
	7.3	Rectify faults			
	7.4	Exchange process module on version IP68 (25 bar)			
	7.5	Instrument repair			
8	Dism	Dismount			
-	8.1	Dismounting steps			
	J. I	Diomodriding diopo	rU		

Contents

	8.2	Disposal	48
9	Supp	plement	49
		Technical data	
	9.2	Calculation of the total deviation.	64
	9.3	Calculation of the total deviation - Practical example	65
	9.4	Dimensions	67
	9.5	Trademark	75

Safety instructions for Ex areas

Take note of the Ex specific safety instructions for Ex applications. These instructions are attached as documents to each instrument with Ex approval and are part of the operating instructions.

Editing status: 2020-05-12

1 About this document

1.1 Function

This instruction provides all the information you need for mounting, connection and setup as well as important instructions for maintenance, fault rectification, the exchange of parts and the safety of the user. Please read this information before putting the instrument into operation and keep this manual accessible in the immediate vicinity of the device.

1.2 Target group

This operating instructions manual is directed to trained personnel. The contents of this manual must be made available to the qualified personnel and implemented.

1.3 Symbols used

Information, **note**, **tip**: This symbol indicates helpful additional information and tips for successful work.

Note: This symbol indicates notes to prevent failures, malfunctions, damage to devices or plants.

Caution: Non-observance of the information marked with this symbol may result in personal injury.

Warning: Non-observance of the information marked with this symbol may result in serious or fatal personal injury.

Danger: Non-observance of the information marked with this symbol results in serious or fatal personal injury.

Ex applications

This symbol indicates special instructions for Ex applications.

List

The dot set in front indicates a list with no implied sequence.

1 Sequence of actions

Numbers set in front indicate successive steps in a procedure.

Battery disposal

This symbol indicates special information about the disposal of batteries and accumulators.

2 For your safety

2.1 Authorised personnel

All operations described in this documentation must be carried out only by trained, qualified personnel authorised by the plant operator.

During work on and with the device, the required personal protective equipment must always be worn.

2.2 Appropriate use

The IPT-2x is a pressure transmitter for process pressure and hydrostatic level measurement.

You can find detailed information about the area of application in chapter "Product description".

Operational reliability is ensured only if the instrument is properly used according to the specifications in the operating instructions manual as well as possible supplementary instructions.

2.3 Warning about incorrect use

Inappropriate or incorrect use of this product can give rise to application-specific hazards, e.g. vessel overfill through incorrect mounting or adjustment. Damage to property and persons or environmental contamination can result. Also, the protective characteristics of the instrument can be impaired.

2.4 General safety instructions

This is a state-of-the-art instrument complying with all prevailing regulations and directives. The instrument must only be operated in a technically flawless and reliable condition. The operator is responsible for the trouble-free operation of the instrument. When measuring aggressive or corrosive media that can cause a dangerous situation if the instrument malfunctions, the operator has to implement suitable measures to make sure the instrument is functioning properly.

The safety instructions in this operating instructions manual, the national installation standards as well as the valid safety regulations and accident prevention rules must be observed by the user.

For safety and warranty reasons, any invasive work on the device beyond that described in the operating instructions manual may be carried out only by personnel authorised by the manufacturer. Arbitrary conversions or modifications are explicitly forbidden. For safety reasons, only the accessory specified by the manufacturer must be used.

To avoid any danger, the safety approval markings and safety tips on the device must also be observed.

2.5 EU conformity

The device fulfils the legal requirements of the applicable EU directives. By affixing the CE marking, we confirm the conformity of the instrument with these directives.

The EU conformity declaration can be found on our homepage.

Due to the design of its process fittings, the device does not subject of EU pressure device directive if it is operated at process pressures < 200 bar.¹⁾

2.6 NAMUR recommendations

NAMUR is the automation technology user association in the process industry in Germany. The published NAMUR recommendations are accepted as the standard in field instrumentation.

The device fulfils the requirements of the following NAMUR recommendations:

- NE 21 Electromagnetic compatibility of equipment²⁾
- NE 43 Signal level for fault information from measuring transducers
- NE 53 Compatibility of field devices and display/adjustment components
- NE 107 Self-monitoring and diagnosis of field devices

For further information see www.namur.de.

2.7 Installation and operation in the USA and Canada

This information is only valid for USA and Canada. Hence the following text is only available in the English language.

Installations in the US shall comply with the relevant requirements of the National Electrical Code (ANSI/NFPA 70).

Installations in Canada shall comply with the relevant requirements of the Canadian Electrical Code

A Class 2 power supply unit has to be used for the installation in the USA and Canada.

Exception: Versions with measuring ranges from 250 bar. These are subject of the EU Pressure Device Directive.

²⁾ Not fulfilled when connecting to an external display and adjustment unit.

3 Product description

3.1 Configuration

Scope of delivery

The scope of delivery encompasses:

Instrument IPT-2x

The further scope of delivery encompasses:

- Documentation
 - Quick setup guide IPT-2x
 - Test certificate for pressure transmitters
 - Instructions for optional instrument features
 - Ex-specific "Safety instructions" (with Ex versions)
 - If necessary, further certificates

Information:

Optional instrument features are also described in this operating instructions manual. The respective scope of delivery results from the order specification.

Scope of this operating instructions

This operating instructions manual applies to the following instrument versions:

- Hardware from 1.0.0
- Software from 1.3.5

Note:

You can find the hardware and software version of the instrument as follows:

- On the type plate of the electronics module
- In the adjustment menu under "Info"

Type label

The type label contains the most important data for identification and use of the instrument:

Fig. 1: Layout of the type label (example)

- 1 Instrument type
- 2 Field for approvals
- 3 Technical data
- 4 Product code
- 5 Serial number of the instrument
- 6 Symbol of the device protection class
- 7 ID numbers, instrument documentation

3.2 Principle of operation

Application area

IPT-2x is suitable for applications in virtually all industries. It is used for the measurement of the following pressure types.

- Gauge pressure
- Absolute pressure
- Vacuum

Measured products

Measured products are gases, vapours and liquids.

The device is especially suitable for applications with higher temperatures and high pressures.

Measured variables

The IPT-2x is suitable for the measurement of the following process variables:

- Process pressure
- Level

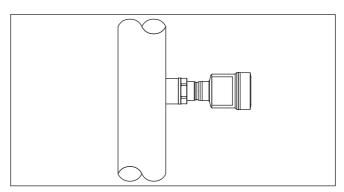


Fig. 2: Process pressure measurement IPT-2x

Measuring system

The process pressure acts on the sensor element via the process diaphragm. The process pressure causes a resistance change which is converted into a corresponding output signal and output as measured value.

Piezoresistive sensor element

Measuring ranges up to 40 bar: piezoresistive sensor element with internal transmission liquid is used.

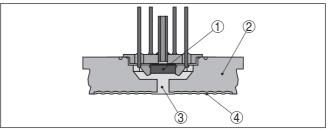


Fig. 3: Configuration of the measuring system with piezoresistive sensor element

- 1 Sensor element
- 2 Base element
- 3 Transmission liquid
- 4 Process diaphragm

Strain gauge (DMS) sensor element

For measuring ranges above 100 bar, a strain gauge (DMS) sensor element (dry system) is used.

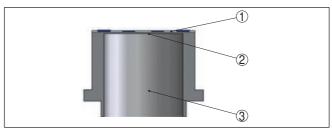


Fig. 4: Configuration of the measuring system with strain gauge (DMS) sensor element

- 1 Sensor element
- 2 Process diaphragm
- 3 Pressure cylinder

Ceramic/metallic measuring cell

With small measuring ranges ≤ 400 mbar or higher temperature ranges, the ceramic/metallic measuring cell is the measuring unit. It consists of the ceramic-capacitive measuring cell and a special, temperature-compensated chemical seal system.

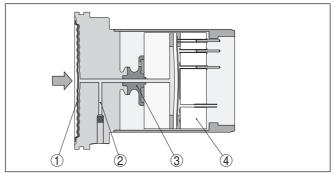


Fig. 5: Configuration of the ceramic/metallic measuring cell

- 1 Process diaphragm
- 2 Isolating liquid
- 3 FeNi adapter
- 4 Ceramic-capacitive measuring cell

Pressure types

The measuring cell design depends on the selected pressure type.

Relative pressure: the measuring cell is open to the atmosphere. The ambient pressure is detected in the measuring cell and compensated. It thus has no influence on the measured value.

Absolute pressure: the measuring cell contains vacuum and is encapsulated. The ambient pressure is not compensated and does hence influence the measured value.

Seal concept

The measuring system is completely welded and thus sealed against the process.

The process fitting is sealed against the process by a suitable seal. It must be provided by the customer, depending on the process fitting also included in the scope of delivery, see chapter "Technical data", "Materials and weights".

3.3 Supplementary cleaning procedures

The IPT-2x is also available in the version "Oil, grease and silicone-free". These instruments have passed through a special cleaning procedure to remove oil, grease and paint-wetting impairment substances (PWIS).

The cleaning is carried out on all wetted parts as well as on surfaces accessible from outside. To keep the purity level, the instruments are immediately packed in plastic foil after the cleaning process. The purity level remains as long as the instrument is kept in the closed original packaging.

Caution:

The IPT-2x in this version may not be used in oxygen applications. For this purpose, instruments are available in the special version "Oil, grease and silicone-free for oxygen applications".

3.4 Packaging, transport and storage

Packaging

Your instrument was protected by packaging during transport. Its capacity to handle normal loads during transport is assured by a test based on ISO 4180.

The packaging consists of environment-friendly, recyclable cardboard. For special versions, PE foam or PE foil is also used. Dispose of the packaging material via specialised recycling companies.

Transport

Transport must be carried out in due consideration of the notes on the transport packaging. Nonobservance of these instructions can cause damage to the device.

Transport inspection

The delivery must be checked for completeness and possible transit damage immediately at receipt. Ascertained transit damage or concealed defects must be appropriately dealt with.

Storage

Up to the time of installation, the packages must be left closed and stored according to the orientation and storage markings on the outside.

Unless otherwise indicated, the packages must be stored only under the following conditions:

- Not in the open
- Dry and dust free
- Not exposed to corrosive media
- · Protected against solar radiation
- Avoiding mechanical shock and vibration

Storage and transport temperature

- Storage and transport temperature see chapter "Supplement -Technical data - Ambient conditions"
- Relative humidity 20 ... 85 %

3 Product description

Lifting and carrying

With instrument weights of more than 18 kg (39.68 lbs) suitable and approved equipment must be used for lifting and carrying.

4 Mounting

4.1 General instructions

Process conditions

Note:

For safety reasons, the instrument must only be operated within the permissible process conditions. You can find detailed information on the process conditions in chapter "*Technical data*" of the operating instructions or on the type label.

Hence make sure before mounting that all parts of the instrument exposed to the process are suitable for the existing process conditions.

These are mainly:

- · Active measuring component
- Process fitting
- Process seal

Process conditions in particular are:

- Process pressure
- Process temperature
- · Chemical properties of the medium
- Abrasion and mechanical influences

Protection against moisture

Protect your instrument against moisture ingress through the following measures:

- Use a suitable connection cable (see chapter "Connecting to power supply")
- Tighten the cable gland or plug connector
- Lead the connection cable downward in front of the cable entry or plug connector

This applies mainly to outdoor installations, in areas where high humidity is expected (e.g. through cleaning processes) and on cooled or heated vessels.

Note:

Make sure that the degree of contamination specified in chapter "Technical data" meets the existing ambient conditions.

Note

Make sure that during installation or maintenance no moisture or dirt can get inside the instrument.

To maintain the housing protection, make sure that the housing lid is closed during operation and locked, if necessary.

Screwing in

Devices with threaded fitting are screwed into the process fitting with a suitable wrench via the hexagon.

See chapter "Dimensions" for wrench size.

Warning:

The housing or the electrical connection may not be used for screwing in! Depending on the device version, tightening can cause damage, e. g. to the rotation mechanism of the housing.

Vibrations

If there is strong vibration at the mounting location, the instrument version with external housing should be used. See chapter "External housing".

Permissible process pressure (MWP) - Device

The permissible process pressure range is specified by "MWP" (Maximum Working Pressure) on the type label, see chapter "*Structure*". The MWP takes the element of the measuring cell and processing fitting combination with the weakest pressure into consideration and may applied permanently. The specification refers to a reference temperature of +20 °C (+68 °F). It also applies when a measuring cell with a higher measuring range than the permissible pressure range of the process fitting is installed order-related.

In order to prevent damage to the device, a test pressure may only exceed the specified MWP briefly by 1.5 times at reference temperature. The pressure stage of the process fitting as well as the overload resistance of the measuring cell are taken into consideration here (see chapter "*Technical Data*").

In addition, a temperature derating of the process fitting, e. g. with flanges, can limit the permissible process pressure range according to the respective standard.

Permissible process pressure (MWP) - Mounting accessory

The permissible process pressure range is stated on the type label. The instrument should only be operated with these pressures if the mounting accessory used also fulfils these values. This should be ensured by suitable flanges, welded sockets, tension rings with Clamp connections, sealings, etc.

Temperature limits

Higher process temperatures often mean also higher ambient temperatures. Make sure that the upper temperature limits stated in chapter "*Technical data*" for the environment of the electronics housing and connection cable are not exceeded.

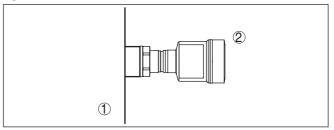


Fig. 6: Temperature ranges

- 1 Process temperature
- 2 Ambient temperature

Oxygen applications

4.2 Instructions for oxygen applications

Oxygen and other gases can be explosive when brought into contact with oils, grease and plastics, so the following measures must also be taken:

- All components of the system, e.g. measuring instruments, must be cleaned in accordance with the requirements of recognized regulations or standards
- Depending on the seal material, certain temperatures and pressures must not be exceeded in oxygen applications, see chapter "Technical data"

Danger:

Instruments for oxygen applications must be unpacked just before mounting. After removing the protective cover of the process fitting, the label "O₂" will be visible on the process fitting. Penetration of oil, grease and dirt should be avoided. Danger of explosion!

4.3 Ventilation and pressure compensation

Filter element - Function

The filter element in the electronics housing has the following functions:

- Ventilation of the electronics housing
- Atmospheric pressure compensation (with relative pressure measuring ranges)

Caution:

The filter element causes a time-delayed pressure compensation. When quickly opening/closing the housing cover, the measured value can change for approx. 5 s by up to 15 mbar.

For an effective ventilation, the filter element must be always free from buildup. In case of horizontal mounting, turn the housing so that the filter element points downward after the instrument is installed. This provides better protection against buildup.

Caution:

Do not use a high-pressure cleaner. The filter element could be damaged, which would allow moisture into the housing.

The following paragraphs describe how the filter element is arranged in the different instrument versions.

Filter element - Position

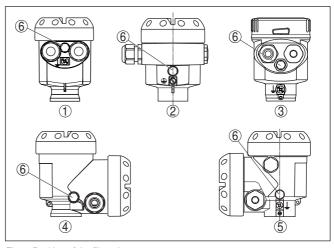


Fig. 7: Position of the filter element

- 1 Plastic, stainless steel single chamber (precision casting)
- 2 Aluminium single chamber
- 3 Stainless steel single chamber (electropolished)
- 4 Plastic double chamber
- 5 Aluminium double chamber
- 6 Filter element

With the following instruments a blind plug is installed instead of the filter element:

- Instruments in protection IP66/IP68 (1 bar) ventilation via capillaries in non-detachable cable
- Instruments with absolute pressure

Filter element - Position Ex-d version

Turn the metal ring in such a way that the filter element points downward after installation of the instrument. This provides better protection against buildup.

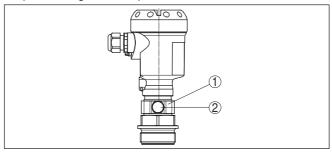


Fig. 8: Position of the filter element - Ex-d version

- 1 Rotatable metal ring
- 2 Filter element

Instruments with absolute pressure have a blind plug mounted instead of the filter element.

Filter element - Position Second Line of Defense

The Second Line of Defense (SLOD) is a second level of the process separation in form of a gas-tight leadthrough in the housing neck, preventing products from penetrating into the housing.

With these instruments, the process assembly is completely encapsulated. An absolute pressure measuring cell is used so that no ventilation is required.

With relative pressure measuring ranges, the ambient pressure is detected and compensated by a reference sensor in the electronics.

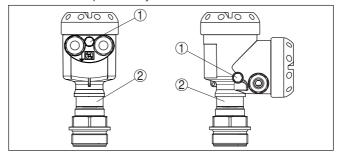


Fig. 9: Position of the filter element - gastight leadthrough

- 1 Filter element
- 2 Gas-tight leadthrough

Filter element - Position IP69K version

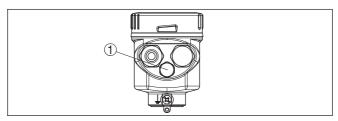


Fig. 10: Position of the filter element - IP69K version

1 Filter element

Instruments with absolute pressure have a blind plug mounted instead of the filter element.

4.4 Process pressure measurement

Measurement setup in gases

Keep the following in mind when setting up the measuring system:

Mount the instrument above the measuring point

Possible condensation can then drain off into the process line.

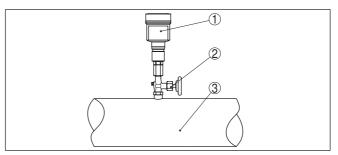


Fig. 11: Measurement setup for process pressure measurement of gases in pipelines

- 1 IPT-2x
- 2 Blocking valve
- 3 Pipeline

Measurement setup in vapours

Keep the following in mind when setting up the measuring system:

- Connect via a siphon
- Do not insulate the siphon
- Fill the siphon with water before setup

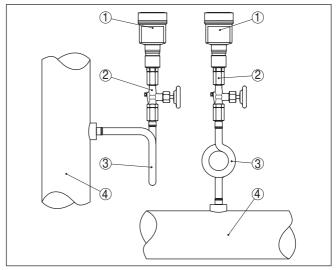


Fig. 12: Measurement setup for the process pressure measurement of gases in pipelines

- 1 IPT-2x
- 2 Blocking valve
- 3 Siphon in U or circular form
- 4 Pipeline

A protective accumulation of water is formed through condensation in the pipe bends. Even in applications with hot steam, a medium temperature $< 100\,^{\circ}\text{C}$ on the transmitter is ensured.

Measurement setup in liquids

Keep the following in mind when setting up the measuring system:

Mount the instrument below the measuring point

The effective pressure line is always filled with liquid and gas bubbles can bubble up to the process line.

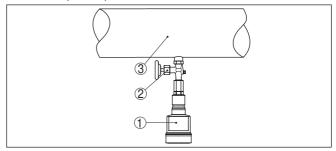


Fig. 13: Measurement setup for the process pressure measurement of liquids in pipelines

- 1 IPT-2x
- 2 Blocking valve
- 3 Pipeline

4.5 Level measurement

Measurement setup

Keep the following in mind when setting up the measuring system:

- Mount the instrument below the min. level
- Do not mount the instrument close to the filling stream or emptying area
- Mount the instrument so that it is protected against pressure shocks from the stirrer

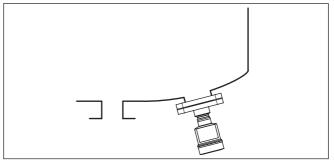


Fig. 14: Measurement setup for the level measurement

Configuration

4.6 External housing

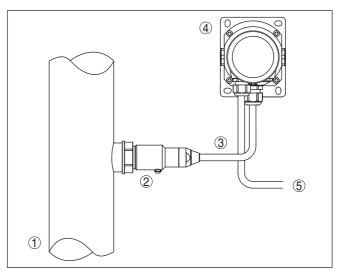


Fig. 15: Configuration, process module, external housing

- 1 Pipeline
- 2 Process module
- 3 Connection cable process assembly External housing
- 4 External housing
- 5 Signal cable

5 Connecting to power supply

Safety instructions

5.1 Preparing the connection

Always keep in mind the following safety instructions:

- Carry out electrical connection by trained, qualified personnel authorised by the plant operator
- If overvoltage surges are expected, overvoltage arresters should be installed

Warning:

Only connect or disconnect in de-energized state.

Voltage supply

Power supply and current signal are carried on the same two-wire cable. The operating voltage can differ depending on the instrument version.

The data for power supply are specified in chapter "Technical data".

Provide a reliable separation between the supply circuit and the mains circuits according to DIN EN 61140 VDE 0140-1.

Power the instrument via an energy-limited circuit acc. to IEC 61010-1, e.g. via Class 2 power supply unit.

Keep in mind the following additional factors that influence the operating voltage:

- Lower output voltage of the power supply unit under nominal load (e.g. with a sensor current of 20.5 mA or 22 mA in case of fault)
- Influence of additional instruments in the circuit (see load values in chapter "Technical data")

Connection cable

The instrument is connected with standard two-wire cable without shielding. If electromagnetic interference is expected which is above the test values of EN 61326-1 for industrial areas, shielded cable should be used.

Use cable with round cross section for instruments with housing and cable gland. Use a cable gland suitable for the cable diameter to ensure the seal effect of the cable gland (IP protection rating).

Cable screening and grounding

If shielded cable is required, we recommend connecting the cable screening on both ends to ground potential. In the sensor, the cable screening must be connected directly to the internal ground terminal. The ground terminal on the outside of the housing must be connected to the ground potential (low impedance).

In Ex systems, the grounding is carried out according to the installation regulations.

In electroplating plants as well as plants for cathodic corrosion protection it must be taken into account that significant potential differences exist. This can lead to unacceptably high currents in the cable screen if it is grounded at both ends.

i

Note:

The metallic parts of the instrument (process fitting, sensor, concentric tube, etc.) are connected with the internal and external ground terminal on the housing. This connection exists either directly via the conductive metallic parts or, in case of instruments with external electronics, via the screen of the special connection cable.

You can find specifications on the potential connections inside the instrument in chapter "*Technical data*".

Cable glands

Metric threads

In the case of instrument housings with metric thread, the cable glands are screwed in at the factory. They are sealed with plastic plugs as transport protection.

Note

You have to remove these plugs before electrical connection.

NPT thread

In the case of instrument housings with self-sealing NPT threads, it is not possible to have the cable entries screwed in at the factory. The free openings for the cable glands are therefore covered with red dust protection caps as transport protection.

Note:

Prior to setup you have to replace these protective caps with approved cable glands or close the openings with suitable blind plugs.

On plastic housings, the NPT cable gland or the Conduit steel tube must be screwed into the threaded insert without grease.

Max. torque for all housings, see chapter "Technical data".

5.2 Connecting

Connection technology

The voltage supply and signal output are connected via the springloaded terminals in the housing.

Connection to the display and adjustment module or to the interface adapter is carried out via contact pins in the housing.

Information:

The terminal block is pluggable and can be removed from the electronics. To do this, lift the terminal block with a small screwdriver and pull it out. When reinserting the terminal block, you should hear it snap in.

Connection procedure

Proceed as follows:

- Unscrew the housing lid
- If a display and adjustment module is installed, remove it by turning it slightly to the left
- 3. Loosen compression nut of the cable gland and remove blind plug
- Remove approx. 10 cm (4 in) of the cable mantle, strip approx.
 1 cm (0.4 in) of insulation from the ends of the individual wires

5. Insert the cable into the sensor through the cable entry

Fig. 16: Connection steps 5 and 6 - Single chamber housing

6. Insert the wire ends into the terminals according to the wiring plan

i

Information:

Solid cores as well as flexible cores with wire end sleeves are inserted directly into the terminal openings. In case of flexible cores without end sleeves, press the terminal from above with a small screwdriver, the terminal opening is then free. When the screwdriver is released, the terminal closes again.

- Check the hold of the wires in the terminals by lightly pulling on them
- 8. Connect the shielding to the internal ground terminal, connect the external ground terminal to potential equalisation
- 9. Tighten the compression nut of the cable entry gland. The seal ring must completely encircle the cable
- 10. Reinsert the display and adjustment module, if one was installed
- 11. Screw the housing lid back on

The electrical connection is finished.

5.3 Single chamber housing

The following illustration applies to the non-Ex as well as to the Ex-ia version.

Electronics and connection compartment

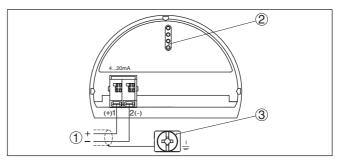


Fig. 17: Electronics and connection compartment - single chamber housing

- 1 Voltage supply, signal output
- 2 For display and adjustment module or interface adapter
- 3 Ground terminal for connection of the cable screening

5.4 Housing IP66/IP68 (1 bar)

Wire assignment, connection cable

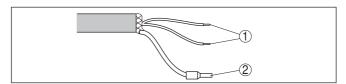


Fig. 18: Wire assignment in permanently connected connection cable

- 1 Brown (+) and blue (-) to power supply or to the processing system
- 2 Shielding

Overview

5.5 External housing with version IP68 (25 bar)

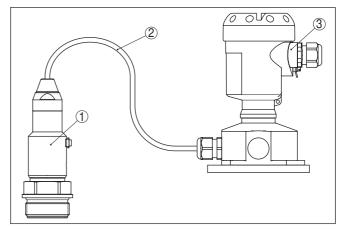


Fig. 19: IPT-2x in IP68 version 25 bar with axial cable outlet, external housing

- 1 Transmitter
- 2 Connection cable
- 3 External housing

Electronics and connection compartment for power supply

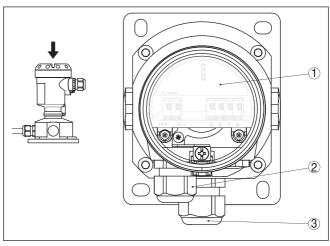


Fig. 20: Electronics and connection compartment

- 1 Electronics module
- 2 Cable gland for voltage supply
- 3 Cable gland for connection cable, transmitter

Terminal compartment, housing socket

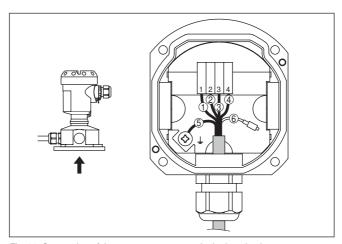


Fig. 21: Connection of the process component in the housing base

- 1 Yellow
- 2 White
- 3 Red
- 4 Black
- 5 Shielding
- 6 Breather capillaries

Electronics and connection compartment

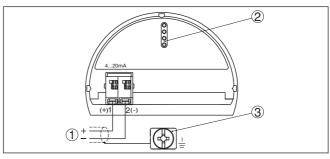


Fig. 22: Electronics and connection compartment - single chamber housing

- 1 Voltage supply, signal output
- 2 For display and adjustment module or interface adapter
- 3 Ground terminal for connection of the cable screening

5.6 Switch-on phase

After connecting the instrument to power supply or after a voltage recurrence, the instrument carries out a self-check:

- Internal check of the electronics
- Indication of a status message on the display or PC
- The output signal jumps to the set fault current

5 Connecting to power supply

Then the actual measured value is output to the signal cable. The value takes into account settings that have already been carried out, e.g. default setting.

6 Set up with the display and adjustment module

6.1 Adjustment system

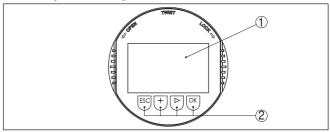


Fig. 23: Display and adjustment elements

- 1 LC display
- 2 Adjustment keys

Key functions

[OK] key:

- Move to the menu overview
- Confirm selected menu
- Edit parameter
- Save value

• [->] key:

- Change measured value presentation
- Select list entry
- Select menu items
- Select editing position

[+] key:

- Change value of the parameter

• [ESC] key:

- Interrupt input
- Jump to next higher menu

Adjustment system

The instrument is operated via the four keys of the display and adjustment module. The individual menu items are shown on the LC display. You can find the function of the individual keys in the previous illustration.

Time functions

When the [+] and [->] keys are pressed quickly, the edited value, or the cursor, changes one value or position at a time. If the key is pressed longer than 1 s, the value or position changes continuously.

When the *[OK]* and *[ESC]* keys are pressed simultaneously for more than 5 s, the display returns to the main menu. The menu language is then switched over to "*English*".

Approx. 60 minutes after the last pressing of a key, an automatic reset to measured value indication is triggered. Any values not confirmed with *[OK]* will not be saved.

6.2 Measured value indication

Measured value indication

With the [->] key you can move between three different indication modes.

In the first view, the selected measured value is displayed in large digits.

In the second view, the selected measured value and a corresponding bargraph presentation are displayed.

In the third view, the selected measured value as well as a second selectable value, e.g. the temperature, are displayed.

With the "**OK**" key you move (during the initial setup of the instrument) to the selection menu "Language".

Selection language

In this menu item, you can select the national language for further parameterization.

With the "[->]" button, you can select the requested language, with "OK" you confirm the selection and move to the main menu.

You can change your selection afterwards with the menu item "Setup - Display, Menu language".

6.3 Parameter adjustment - Quick setup

To quickly and easily adapt the sensor to the application, select the menu item "Quick setup" in the start graphic on the display and adjustment module.

Select the individual steps with the [->] key.

After the last step, "Quick setup terminated successfully" is displayed briefly.

The return to the measured value indication is carried out through the *[->]* or *[ESC]* keys or automatically after 3 s

Note:

You can find a description of the individual steps in the quick setup guide of the sensor.

You can find "Extended adjustment" in the next sub-chapter.

6.4 Parameter adjustment - Extended adjustment

For technically demanding measuring points, you can carry out extended settings in "Extended adjustment".

Main menu

The main menu is divided into five sections with the following functions:

Setup: Settings, e.g., for measurement loop name, application, units, position correction, adjustment, signal output

Display: Settings, e.g., for language, measured value display, lighting **Diagnosis:** Information, e.g. on instrument status, pointer, measure-

ment reliability, simulation

Additional adjustments: PIN, date/time, reset, copy function

Info: Instrument name, hardware and software version, date of manufacture, sensor features

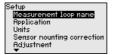
•

Note:

For optimum adjustment of the measuring point, the individual submenu items in the main menu item "Setup" should be selected one after the other and provided with the correct parameters. If possible, go through the items in the given sequence.

The submenu points are described below.

6.4.1 Setup

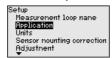

Measurement loop name

In the menu item "Sensor TAG" you edit a twelve-digit measurement loop designation.

You can enter an unambiguous designation for the sensor, e.g. the measurement loop name or the tank or product designation. In digital systems and in the documentation of larger plants, a singular designation must be entered for exact identification of individual measuring points.

The available digits include:

- Letters from A ... Z
- Numbers from 0 ... 9
- Special characters +, -, /, -

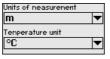

Application


In this menu item you activate/deactivate the slave sensor for electronic differential pressure and select the application.

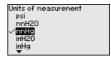
IPT-2x can be used for process pressure and level measurement. The setting in the delivery status is process pressure measurement. The mode can be changed in this adjustment menu.

If you have connected **no** slave sensor, you confirm this with "Deactivate".

Depending on the selected application, different subchapters in the following adjustment steps are important. There you can find the individual adjustment steps.

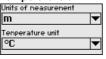


Enter the requested parameters via the appropriate keys, save your settings with *[OK]* and jump to the next menu item with the *[ESC]* and the *[->]* key.


Units

In this menu item, the adjustment units of the instrument are determined. The selection determines the unit displayed in the menu items "Min. adjustment (Zero)" and "Max. adjustment (Span)".

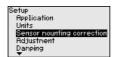
Unit of measurement:



If the level should be adjusted in a height unit, the density of the medium must also be entered later during the adjustment.

In addition, the temperature unit of the instrument is specified. The selection determines the unit displayed in menu items "Peak value, temperature" and "in the variables of the digital output signal".

Temperature unit:



Enter the requested parameters via the appropriate keys, save your settings with *[OK]* and jump to the next menu item with the *[ESC]* and the *[->]* key.

Position correction

Especially with chemical seal systems, the installation position of the instrument can shift (offset) the measured value. Position correction compensates this offset. In the process, the actual measured value is taken over automatically. With relative pressure measuring cells a manual offset can also be carried out.

Note:

If the current measured value is automatically accepted, it must not be falsified by medium coverage or static pressure.

With the manual position correction, the offset value can be determined by the user. Select for this purpose the function "Edit" and enter the requested value.

Save your settings with **[OK]** and move with **[ESC]** and **[->]** to the next menu item.

After the position correction is carried out, the actual measured value is corrected to 0. The corrective value appears with an inverse sign as offset value in the display.

The position correction can be repeated as often as necessary. However, if the sum of the corrective values exceeds 20 % of the nominal measuring range, then no position correction is possible.

Adjustment

IPT-2x always measures pressure independently of the process variable selected in the menu item "Application". To output the selected process variable correctly, an allocation of the output signal to 0 % and 100 % must be carried out (adjustment).

With the application "Level", the hydrostatic pressure, e.g. with full and empty vessel, is entered for adjustment. See following example:

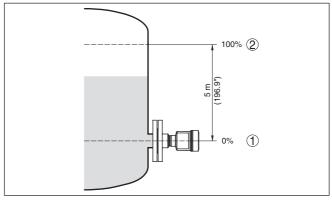


Fig. 24: Parameter adjustment example "Min./max. adjustment, level measure-ment"

- 1 Min. level = 0 % corresponds to 0.0 mbar
- 2 Max. level = 100 % corresponds to 490.5 mbar

If these values are not known, an adjustment with filling levels of e.g. 10 % and 90 % is also possible. By means of these settings, the real filling height is then calculated.

The actual product level during this adjustment is not important, because the min./max. adjustment is always carried out without

changing the product level. These settings can be made ahead of time without the instrument having to be installed.

i

Note:

If the adjustment ranges are exceeded, the entered value will not be accepted. Editing can be interrupted with *[ESC]* or corrected to a value within the adjustment ranges.

For the other process variables such as e.g. process pressure, differential pressure or flow, the adjustment is performed in like manner.

Zero adjustment

Proceed as follows:

Select the menu item "Setup" with [->] and confirm with [OK].
 Now select with [->] the menu item "Zero adjustment" and confirm with [OK].

Edit the mbar value with [OK] and set the cursor to the requested position with [->].

- 3. Set the requested mbar value with [+] and store with [OK].
- 4. Go with [ESC] and [->] to the span adjustment

The zero adjustment is finished.

Information:

The Zero adjustment shifts the value of the span adjustment. The span, i.e. the difference between these values, however, remains unchanged.

For an adjustment with pressure, simply enter the actual measured value indicated at the bottom of the display.

If the adjustment ranges are exceeded, the message "Outside parameter limits" appears. The editing procedure can be aborted with [ESC] or the displayed limit value can be accepted with [OK].

Span adjustment

Proceed as follows:

Select with [->] the menu item Span adjustment and confirm with [OK].

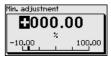
Edit the mbar value with [OK] and set the cursor to the requested position with [->].

Set the requested mbar value with [+] and store with [OK].

For an adjustment with pressure, simply enter the actual measured value indicated at the bottom of the display.

If the adjustment ranges are exceeded, the message "Outside parameter limits" appears. The editing procedure can be aborted with [ESC] or the displayed limit value can be accepted with [OK].

The span adjustment is finished.


Min. adjustment level

Proceed as follows:

Select the menu item "Setup" with [->] and confirm with [OK].
 Now select with [->] the menu item "Adjustment", then "Min. adjustment" and confirm with [OK].

- Edit the percentage value with [OK] and set the cursor to the requested position with [->].
- Set the requested percentage value (e.g. 10 %) with [+] and save with [OK]. The cursor jumps now to the pressure value.
- Enter the pressure value corresponding to the min. level (e.g. 0 mbar).
- Save settings with [OK] and move with [ESC] and [->] to the max. adjustment.

The min. adjustment is finished.

For an adjustment with filling, simply enter the actual measured value indicated at the bottom of the display.

Max. adjustment level

Proceed as follows:

Select with [->] the menu item Max. adjustment and confirm with [OK].

- Edit the percentage value with [OK] and set the cursor to the requested position with [->].
- Set the requested percentage value (e.g. 90 %) with [+] and save with [OK]. The cursor jumps now to the pressure value.
- Enter the pressure value for the full vessel (e.g. 900 mbar) corresponding to the percentage value.
- 5. Save settings with [OK]

The max. adjustment is finished.

For an adjustment with filling, simply enter the actual measured value indicated at the bottom of the display.

Damping

To damp process-dependent measured value fluctuations, set an integration time of $0\dots 999$ s in this menu item. The increment is 0.1 s.

The setting in the delivery status depends on the sensor type.

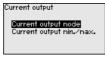
Linearisation

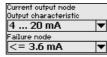
A linearization is necessary for all vessels in which the vessel volume does not increase linearly with the level - e.g. a horizontal cylindrical or spherical tank - and the indication or output of the volume is required. Corresponding linearization curves are preprogrammed for these vessels. They represent the correlation between the level percentage and vessel volume. The linearization applies to the measured value indication and the current output.

With flow measurement and selection "Linear" display and output (percentage/current) are linear to "Differential pressure". This can be used, for example, to feed a flow computer.

With flow measurement and selection "Extraction by root" display and output (percentage/current) are linear to "Flow". 3)

With flow in two directions (bidirectional) a negative differential pressure is also possible. This must already be taken into account in menu item "Min. adjustment flow".

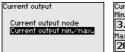

Caution:

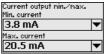

Note the following, if the respective sensor is used as part of an overfill protection system according to WHG:

If a linearisation curve is selected, the measuring signal is no longer necessarily linear to the filling height. This must be considered by the user especially when setting the switching point on the limit signal transmitter.

Current output (mode)

In the menu item "Current output mode" you determine the output characteristics and reaction of the current output in case of fault.

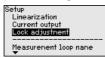


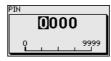

The default setting is output characteristics 4 \dots 20 mA, fault mode < 3.6 mA.

3) The device assumes an approximately constant temperature and static pressure and converts the differential pressure into the flow rate via the characteristic curve extracted by root.

Current output (min./ max.)

In the menu item "Current output Min./Max.", you determine the reaction of the current output during operation.





The default setting is min. current 3.8 mA and max. current 20.5 mA.

Lock/Unlock adjustment

In the menu item "Lock/unlock adjustment" you safeguard the sensor parameters against unauthorized or unintentional modifications.

With active PIN, only the following adjustment functions are possible without entering a PIN:

- · Select menu items and show data
- Read data from the sensor into the display and adjustment module

Releasing the sensor adjustment is also possible in any menu item by entering the PIN.

Caution:

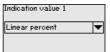
With active PIN, adjustment via PACTware/DTM and other systems is also blocked.

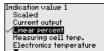
6.4.2 Display

Language

This menu item enables the setting of the requested national language.

The following languages are available:


- German
- English
- French
- Spanish
- Russian
- Italian
- Dutch
- Portuguese
- Japanese
- Chinese
- Polish
- Czech
- Turkish


In delivery status, the IPT-2x is set to English.

Display value 1 and 2

In this menu item, you define which measured value is displayed.

The setting in the delivery status for the display value is "Lin. percent".

Display format 1 and 2

In this menu item you define the number of decimal positions with which the measured value is displayed.

The setting in the delivery status for the display format is "Automatic".

Backlight

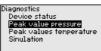
The display and adjustment module has a backlight for the display. In this menu item you can switch on the lighting. You can find the required operating voltage in chapter "*Technical data*".

In delivery status, the lighting is switched on.

6.4.3 Diagnostics

Sensor status

In this menu item, the device status is displayed.

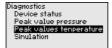


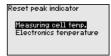
In case of error, e.g. the error code F017, e.g. the error description "Adjustment span too small" and a four digit figure are displayed for service purposes. You can find the error codes with description, reason as well as rectification in chapter "Asset Management".

Peak value, pressure

The respective min. and max. measured values are saved in the sensor. The two values are displayed in menu item "Peak values, pressure".

In another window you can carry out a reset of the peak values separately.


Pressure Min. -0.0015 bar Max. 1.4912 bar


Peak value, temperature

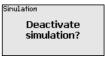
The respective min. and max. measured values of the measuring cell and the electronics temperature are stored in the sensor. In menu item "Peak value, temperature", both values are displayed.

In another window you can carry out a reset of the two peak values separately.

Measuring cell temp.
Min. 20.26 ℃
Max. 26.59 ℃
Electronics temperature
Min. - 32.80 ℃
Max. 38.02 ℃

Simulation

In this menu item you can simulate measured values. This allows the signal path to be tested, e.g. through downstream indicating instruments or the input card of the control system.



Select the requested simulation variable and set the requested value.

To deactivate the simulation, you have to push the *[ESC]* key and confirm the message "Deactivate simulation" with the *[OK]* key.

Caution:

During simulation, the simulated value is output as 4 ... 20 mA current value and with instruments 4 ... 20 mA/HART in addition as digital HART signal. The status message within the context of the asset management function is "Maintenance".

Note:

Without manual deactivation, the sensor terminates the simulation automatically after 60 minutes.

6.4.4 Additional adjustments

After a reset, certain parameter adjustments made by the user are reset.

The following reset functions are available:

Delivery status: Restores the parameter settings at the time of shipment from the factory, incl. the order-specific settings. Any user-defined linearisation curve as well as the measured value memory are deleted.

Basic settings: Resetting of the parameter settings incl. special parameters to the default values of the respective instrument. Any user programmable linearization curve as well as the measured value memory are deleted.

The following table shows the default values of the instrument. Depending on the instrument version or application, all menu items may not be available or some may be differently assigned:

Reset

6 Set up with the display and adjustment module

Setup

Menu item	Parameter	Default value	
Measurement loop name		Sensor	
Application	Application	Level	
Units	Unit of measurement	mbar (with nominal measuring range ≤ 400 mbar)	
		bar (with nominal measuring ranges ≥ 1 bar)	
	Temperature unit	°C	
Position correction		0.00 bar	
Adjustment	Zero/Min. adjustment	0.00 bar	
		0.00 %	
	Span/Max. adjustment	Nominal measuring range in bar	
		100.00 %	
Damping	Integration time	1 s	
Linearisation		Linear	
Current output	Current output - Mode	Output characteristics	
		4 20 mA	
		Reaction when malfunctions occur	
		≤ 3.6 mA	
	Current output - Min./Max.	3.8 mA	
		20.5 mA	
Lock adjustment		Released	

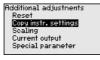
Display

Menu item	Default value
Menu language	Selected language
Displayed value 1	Current output in %
Displayed value 2	Ceramic measuring cell: Measuring cell temperature in °C
	Metallic measuring cell: Electronics temperature in °C
Display format 1 and 2	Number of positions after the decimal point, automatically
Backlight	Switched on

Diagnostics

Menu item	Parameter	Default value
Sensor status		-
Peak value indicator	Pressure	Actual measured value
	Temperature	Actual temperature values from measuring cell, electronics
Simulation		Process pressure

Additional adjustments


Menu item	Parameter	Default value
PIN		0000
Date/Time		Actual date/Actual time
Copy instrument settings		
Special parameters		No reset
Scaling	Scaling size	Volume in I
	Scaling format	0 % corresponds to 0 I
		100 % corresponds to 0 I
Current output	Current output - Meas. variable	Lin. percent - Level
	Current output - Adjust- ment	0 100 % correspond to 4 20 mA

Copy instrument settings The instrument settings are copied with this function. The following functions are available:

- Read from sensor: Read data from sensor and store into the display and adjustment module
- Write into sensor: Store data from the display and adjustment module back into the sensor

The following data or settings for adjustment of the display and adiustment module are saved:

- All data of the menu "Setup" and "Display"
- In the menu "Additional adjustments" the items "Reset, Date/Time"
- The user-programmable linearization curve

The copied data are permanently saved in an EEPROM memory in the display and adjustment module and remain there even in case of power failure. From there, they can be written into one or more sensors or kept as backup for a possible electronics exchange.

Note:

Before the data are saved in the sensor, a safety check is carried out to determine if the data match the sensor. In the process the sensor type of the source data as well as the target sensor are displayed. If the data do not match, a fault message is outputted or the function is blocked. The data are saved only after release.

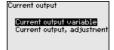
Scaling (1)

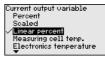
In menu item "Scaling" you define the scaling variable and the scaling unit for the level value on the display, e.g. volume in I.

Additional adjustments
Reset
Copy instr. settings
Scaling
Current output
Special parameter

Scaling (2)

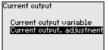
In menu item "Scaling (2)" you define the scaling format on the display and the scaling of the measured level value for 0 % and 100 %.

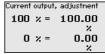




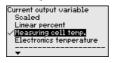
Current output (meas. variable)

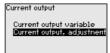
In menu item "Current output, variable" you specify which measured variable is output via the current output.





Current output (adjustment)


Depending on the selected measured variable, you assign in the menu item "*Current output, adjustment*" the measured values that 4 mA (0 %) and 20 mA (100 %) of the current output refer to.



If the measuring cell temperature is selected as measured variable, then e.g. 0 °C refers to 4 mA and 100 °C to 20 mA.

Special parameters

In this menu item you gain access to the protected area where you can enter special parameters. In exceptional cases, individual parameters can be modified in order to adapt the sensor to special requirements.

Change the settings of the special parameters only after having contacted our service staff.

6.4.5 Info

Device name

In this menu item, you can read out the instrument name and the instrument serial number:

Instrument version

In this menu item, the hardware and software version of the sensor is displayed.

Factory calibration date

In this menu item, the date of factory calibration of the sensor as well as the date of the last change of sensor parameters are displayed via the display and adjustment module or via the PC.

Sensor characteristics

In this menu item, the features of the sensor such as approval, process fitting, seal, measuring range, electronics, housing and others are displayed.

6.5 Saving the parameterisation data

On paper

We recommended writing down the adjustment data, e.g. in this operating instructions manual, and archiving them afterwards. They are thus available for multiple use or service purposes.

In the display and adjustment module

If the instrument is equipped with a display and adjustment module, the parameter adjustment data can be saved therein. The procedure is described in menu item "Copy device settings".

7 Diagnostics and servicing

7.1 Maintenance

Maintenance

If the device is used properly, no special maintenance is required in normal operation.

Precaution measures against buildup

In some applications, product buildup on the diaphragm can influence the measuring result. Depending on the sensor and application, take precautions to ensure that heavy buildup, and especially a hardening thereof, is avoided.

Cleaning

The cleaning helps that the type label and markings on the instrument are visible.

Take note of the following:

- Use only cleaning agents which do not corrode the housings, type label and seals
- Use only cleaning methods corresponding to the housing protection rating

7.2 Diagnosis function

Failure

Code	Cause	Rectification
Text message		
F013	Gauge pressure or low pressure	Exchange measuring cell
No valid measured value available	Measuring cell defective	Send instrument for repair
F017	Adjustment not within specification	Change the adjustment according to
Adjustment span too small		the limit values
F025	Index markers are not continuously ris-	Check linearisation table
Error in the linearization table	ing, for example illogical value pairs	Delete table/Create new
F036	Failed or interrupted software update	Repeat software update
no operable sensor software		Check electronics version
		Exchanging the electronics
		Send instrument for repair
F040	Hardware defect	Exchanging the electronics
Error in the electronics		Send instrument for repair
F041	No connection to the sensor electronics	Check connection between sensor and
Communication error		main electronics (with separate version)
F080	General software error	Disconnect operating voltage briefly
General software error		
F105	The instrument is still in the start phase,	Wait for the end of the switch-on phase
Measured value is deter- mined	the measured value could not yet be determined	

7 Diagnostics and servicing

Code	Cause	Rectification
Text message		
F113	Error in the internal instrument commu-	Disconnect operating voltage briefly
Communication error	nication	Send instrument for repair
F260	Error in the calibration carried out in the	Exchanging the electronics
Error in the calibration	factory	Send instrument for repair
	Error in the EEPROM	
F261	Error during setup	Repeat setup
Error in the instrument set- tings	Error when carrying out a reset	Repeat reset
F264	Inconsistent settings (e.g.: distance, ad-	Modify settings
Installation/Setup error	justment units with application process pressure) for selected application	Modify connected sensor configuration or application
	Invalid sensor configuration (e.g.: application electronic differential pressure with connected differential pressure measuring cell)	
F265	Sensor no longer carries out a meas-	Carry out a reset
Measurement function disturbed	urement	Disconnect operating voltage briefly

Tab. 5: Error codes and text messages, information on causes as well as corrective measures

Function check

Code	Cause	Rectification
Text message		
C700	A simulation is active	Finish simulation
Simulation active		Wait for the automatic end after 60 mins.

Out of specification

Code	Cause	Rectification
Text message		
S600	Temperature of the electronics in the	Check ambient temperature
Impermissible electronics	non-specified range	Insulate electronics
temperature		Use instrument with higher temperature range
S603	Operating voltage below specified	Check electrical connection
Impermissible operating voltage	range	If necessary, increase operating voltage
S605	Measured process pressure below or	Check nominal measuring range of the
Impermissible pressure value	above the adjustment range	instrument
		If necessary, use an instrument with a higher measuring range

Tab. 7: Error codes and text messages, information on causes as well as corrective measures

Maintenance

Code	Cause	Rectification
Text message		
M500	The data could not be restored during	Repeat reset
Error in the delivery status	the reset to delivery status	Load XML file with sensor data into the sensor
M501	Index markers are not continuously ris-	Check linearisation table
Error in the non-active linearisation table	ing, for example illogical value pairs	Delete table/Create new
M502	Hardware error EEPROM	Exchanging the electronics
Error in the event memory		Send instrument for repair
M504	Hardware defect	Exchanging the electronics
Error at a device interface		Send instrument for repair
M507	Error during setup	Carry out reset and repeat setup
Error in the instrument set- tings	Error when carrying out a reset	

Tab. 8: Error codes and text messages, information on causes as well as corrective measures

7.3 Rectify faults

Reaction when malfunction occurs

The operator of the system is responsible for taking suitable measures to rectify faults.

Fault rectification

The first measures are:

- · Evaluation of fault messages
- · Checking the output signal
- Treatment of measurement errors

Further comprehensive diagnostics options are available with a PC/ notebook with PACTware and the suitable DTM. In many cases, the reasons can be determined in this way and faults rectified.

4 ... 20 mA signal

Connect a multimeter in the suitable measuring range according to the wiring plan. The following table describes possible errors in the current signal and helps to eliminate them:

Error	Cause	Rectification
4 20 mA signal not stable	Fluctuating measured value	Set damping
4 20 mA signal missing	Electrical connection faulty	Check connection, correct, if necessary
	Voltage supply missing	Check cables for breaks; repair if necessary
	Operating voltage too low, load resistance too high	Check, adapt if necessary
Current signal greater than 22 mA, less than 3.6 mA	Sensor electronics defective	Replace device or send in for repair depending on device version

Reaction after fault rectification

Depending on the reason for the fault and the measures taken, the steps described in chapter "Setup" must be carried out again or must be checked for plausibility and completeness.

7.4 Exchange process module on version IP68 (25 bar)

On version IP68 (25 bar), the user can exchange the process module on site. Connection cable and external housing can be kept.

Required tools:

Hexagon key wrench, size 2

Caution

The exchange may only be carried out in the complete absence of line voltage.

In Ex applications, only a replacement part with appropriate Ex approval may be used.

Caution:

During exchange, protect the inner side of the parts against contamination and moisture.

Proceed as follows when carrying out the exchange:

- 1. Losen the fixing screw with the hexagon key wrench
- 2. Carefully detach the cable assembly from the process module

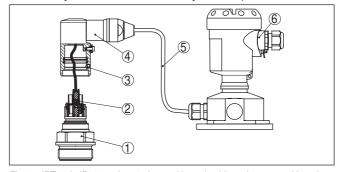


Fig. 25: IPT-2x in IP68 version, 25 bar and lateral cable outlet, external housing

- 1 Process module
- 2 Plug connector
- 3 Fixing screw
- 4 Cable assembly
- 5 Connection cable
- 6 External housing
- 3. Loosen the plug connector
- 4. Mount the new process module on the measuring point
- 5. Plug the connector back in
- Mount the cable assembly on the process module and turn it to the desired position

7. Tighten the fixing screw with the hexagon key wrench The exchange is finished.

7.5 Instrument repair

You can find information for a return shipment under "Service" on our local website.

If a repair is necessary, please proceed as follows:

- Complete one form for each instrument
- If necessary, state a contamination
- Clean the instrument and pack it damage-proof
- Attach the completed form and possibly also a safety data sheet to the instrument

8 Dismount

8.1 Dismounting steps

Warning:

Before dismounting, be aware of dangerous process conditions such as e.g. pressure in the vessel or pipeline, high temperatures, corrosive or toxic media etc.

Take note of chapters "Mounting" and "Connecting to voltage supply" and carry out the listed steps in reverse order.

8.2 Disposal

The instrument consists of materials which can be recycled by specialised recycling companies. We use recyclable materials and have designed the electronics to be easily separable.

WEEE directive

The instrument does not fall in the scope of the EU WEEE directive. Article 2 of this Directive exempts electrical and electronic equipment from this requirement if it is part of another instrument that does not fall in the scope of the Directive. These include stationary industrial plants.

Pass the instrument directly on to a specialised recycling company and do not use the municipal collecting points.

If you have no way to dispose of the old instrument properly, please contact us concerning return and disposal.

9 Supplement

9.1 Technical data

Note for approved instruments

The technical data in the respective safety instructions which are included in delivery are valid for approved instruments (e.g. with Ex approval). These data can differ from the data listed herein, for example regarding the process conditions or the voltage supply.

All approval documents can be downloaded from our homepage.

Materials and weights

Materials, wetted (piezoresistive/strain gauge measuring cell)

Process fitting 316L
Diaphragm standard 316L

Diaphragm from measuring range 316L, Elgiloy (2.4711)

100 bar

Seal ring, O-ring FKM (VP2/A), EPDM (A+P 70.10-02), FFKM (Perlast

G75S), FEPM (Fluoraz SD890)

Seal for process fitting (in the scope of delivery)

- Thread G½ (EN 837) Aramid/NBR Materials, wetted (ceramic/metallic measuring cell)

Process fitting 316L

Diaphragm Alloy C276 (2.4819), gold-coated 20 μ, gold/rhodium-

coated 5 $\mu/1$ $\mu^{4)}$

Seal for process fitting (in the scope of delivery)

Thread G1½ (DIN 3852-A)
 Klingersil C-4400
 Thread M44 x 1.25 (DIN 13)
 FKM, FFKM, EPDM

Surface quality, hygienic process fittings, R₂ < 0.8 μm

typ.

Materials, non-wetted parts

Isolating liquid ceramic/metallic measur- KN 92 medical white oil (FDA conform)

ing cell

Internal transmission liquid piezoresistive Synthetic oil KN 77, Neobee M 20 KN 59 (FDA conform),

measuring cell Halocarbon oil 6.3 KN 21⁵⁾⁶⁾

Housing

Housing
 Plastic PBT (Polyester), Aluminium AlSi10Mg (powder-

coated, basis: Polyester), 316L

Cable gland
 PA, stainless steel, brass

Cable gland: Seal, closure
 NBR, PA

⁴⁾ Not on instruments with SIL qualification.

⁵⁾ Transmission liquid with measuring ranges up to 40 bar. With measuring ranges from 100 bar dry measuring cell.

⁶⁾ Halocarbon oil: Generally in oxygen applications, not with vacuum measuring ranges, not with absolute measuring ranges < 1 bar_{abs}.

9 Supplement

- Seal, housing lid Silicone SI 850 R, NBR silicone-free

Inspection window housing cover
 Polycarbonate (UL-746-C listed), glass⁷⁾

Ground terminal316L

External housing - deviating materials

Housing and socket
 Plastic PBT (Polyester), 316L

Socket seal
 Seal below wall mounting plate⁸⁾
 EPDM

Inspection window housing cover
 Polycarbonate (UL-746-C listed)

Ground terminal 316Ti/316L

Connection cable with IP68 (25 bar) version9)

Cable cover
 Type label support on cable
 Connection cable with IP68 (1 bar) ver
PE, PUR
PE, PUR
PE, PUR

sion¹⁰⁾
Weights

Total weight IPT-2x approx. 0.8 ... 8 kg (1.764 ... 17.64 lbs), depending on

process fitting and housing

Torques

Max. torque, metric process fittings

- G¼, G½
 - G½ front-flush, G1 front-flush
 - G1½ front-flush (piezoresistive meas 40 Nm (29.50 lbf ft)
 40 Nm (29.50 lbf ft)

uring cell)

– G1½ front-flush (ceramic/metallic

200 Nm (147.5 lbf ft)

measuring cell)

Max. torque, non-metric process fittings

- ½ NPT inside, ¼ NPT, 50 Nm (36.88 lbf ft)

≤ 40 bar/500 psig

- ½ NPT inside, ¼ NPT, 200 Nm (147.5 lbf ft)

> 40 bar/500 psig

- 7/16 NPT for tube 1/4" 40 Nm (29.50 lbf ft) - 9/16 NPT for tube 3/8" 50 Nm (36.88 lbf ft)

Max. torque for NPT cable glands and Conduit tubes

Plastic housing
 Aluminium/Stainless steel housing
 Nm (7.376 lbf ft)
 50 Nm (36.88 lbf ft)

⁷⁾ Glass with Aluminium and stainless steel precision casting housing

⁸⁾ Only for 316L with 3A approval

⁹⁾ Between transmitter and external electronics housing.

¹⁰⁾ Fix connected to the sensor.

Input variable - Piezoresistive/Strain gauge measuring cell

The specifications are only an overview and refer to the measuring cell. Limitations due to the material and version of the process fitting as well as the selected pressure type are possible. The specifications on the nameplate apply.¹¹⁾

Nominal measuring ranges and overload capability in bar/kPa

Nominal range	Overload capability		
	Maximum pressure	Minimum pressure	
Gauge pressure			
0 +0.4 bar/0 +40 kPa	+1.2 bar/+120 kPa	-1 bar/-100 kPa	
0 +1 bar/0 +100 kPa	+3 bar/+300 kPa	-1 bar/-100 kPa	
0 +2.5 bar/0 +250 kPa	+7.5 bar/+750 kPa	-1 bar/-100 kPa	
0 +10 bar/0 +1000 kPa	+30 bar/+3000 kPa	-1 bar/-100 kPa	
0 +25 bar/0 +2500 kPa	+75 bar/+7500 kPa	-1 bar/-100 kPa	
0 +40 bar/0 +4000 kPa	+120 bar/+12 MPa	-1 bar/-100 kPa	
0 +100 bar/0 +10 MPa	+200 bar/+20 MPa	-1 bar/-100 kPa	
0 +250 bar/0 +25 MPa	+500 bar/+50 MPa	-1 bar/-100 kPa	
0 +600 bar/0 +60 MPa	+1200 bar/+120 MPa	-1 bar/-100 kPa	
0 +1000 bar/0 +100 MPa	+1500 bar/+150 MPa	-1 bar/-100 kPa	
-1 0 bar/-100 0 kPa	+3 bar/+300 kPa	-1 bar/-100 kPa	
-1 +1.5 bar/-100 +150 kPa	+7.5 bar/+750 kPa	-1 bar/-100 kPa	
-1 +10 bar/-100 +1000 kPa	+30 bar/+3000 kPa	-1 bar/-100 kPa	
-1 +25 bar/-100 +2500 kPa	+75 bar/+7500 kPa	-1 bar/-100 kPa	
-1 +40 bar/-100 +4000 kPa	+120 bar/+12 MPa	-1 bar/-100 kPa	
-0.2 +0.2 bar/-20 +20 kPa	+1.2 bar/+120 kPa	-1 bar/-100 kPa	
-0.5 +0.5 bar/-50 +50 kPa	+3 bar/+300 kPa	-1 bar/-100 kPa	
Absolute pressure			
0 1 bar/0 100 kPa	3 bar/300 kPa	0 bar abs.	
0 2.5 bar/0 250 kPa	7.5 bar/750 kPa	0 bar abs.	
0 10 bar/0 1000 kPa	30 bar/3000 kPa	0 bar abs.	
0 25 bar/0 2500 kPa	75 bar/+7500 kPa	0 bar abs.	
0 40 bar/0 4000 kPa	120 bar/+12 MPa	0 bar abs.	

Nominal measuring ranges and overload capacity in psi

Nominal range	Overload capability	
	Maximum pressure Minimum pressure	
Gauge pressure		
0 +5 psig	+15 psig	-14.5 psig

¹¹⁾ Data on overload capability apply for reference temperature.

Nominal range	Overlo	Overload capability		
	Maximum pressure	Minimum pressure		
0 +15 psig	+45 psig	-14.5 psig		
0 +30 psig	+90 psig	-14.5 psig		
0 +150 psig	+450 psig	-14.5 psig		
0 +300 psig	+900 psig	-14.5 psig		
0 +500 psig	+1500 psig	-14.5 psig		
0 +1450 psig	+3000 psig	-14.5 psig		
0 +3000 psig	+6000 psig	-14.5 psig		
0 +9000 psig	+18000 psig	-14.5 psig		
0 +15000 psig	+22500 psig	-14.5 psig		
-14.5 0 psig	+45 psig	-14.5 psig		
-14.5 +20 psig	+90 psig	-14.5 psig		
-14.5 +150 psig	+450 psig	-14.5 psig		
-14.5 +300 psig	+900 psig	-14.5 psig		
-14.5 +600 psig	+1200 psig	-14.5 psig		
-3 +3 psig	+15 psig	-14.5 psig		
-7 +7 psig	+45 psig	-14.5 psig		
Absolute pressure				
0 15 psi	45 psi	0 psi		
0 30 psi	90 psi	0 psi		
0 150 psi	450 psi	0 psi		
0 300 psi	600 psi	0 psi		
0 500 psig	1500 psi	0 psi		

Input variable - Ceramic/metallic measuring cell

The specifications are only an overview and refer to the measuring cell. Limitations due to the material and version of the process fitting are possible. The specifications on the nameplate apply. (12)

Nominal measuring ranges and overload capability in bar/kPa

Nominal range	Overload capability		
	Maximum pressure Minimum pressure		
Gauge pressure			
0 +0.1 bar/0 +10 kPa	+15 bar/+1500 kPa	-1 bar/-100 kPa	
0 +0.4 bar/0 +40 kPa	+30 bar/+3000 kPa	-1 bar/-100 kPa	
0 +1 bar/0 +100 kPa	+35 bar/+3500 kPa	-1 bar/-100 kPa	
0 +2.5 bar/0 +250 kPa	+50 bar/+5000 kPa	-1 bar/-100 kPa	
0 +10 bar/0 +1000 kPa	+50 bar/+5000 kPa	-1 bar/-100 kPa	

¹²⁾ Data on overload capability apply for reference temperature.

Nominal range	Overloa	Overload capability		
	Maximum pressure	Minimum pressure		
0 +25 bar/0 +2500 kPa	+50 bar/+5000 kPa	-1 bar/-100 kPa		
-1 0 bar/-100 0 kPa	+35 bar/+3500 kPa	-1 bar/-100 kPa		
-1 +1.5 bar/-100 +150 kPa	+50 bar/+5000 kPa	-1 bar/-100 kPa		
-1 +10 bar/-100 +1000 kPa	+50 bar/+5000 kPa	-1 bar/-100 kPa		
-1 +25 bar/-100 +2500 kPa	+50 bar/+5000 kPa	-1 bar/-100 kPa		
-0.2 +0.2 bar/-20 +20 kPa	+20 bar/+3000 kPa	-1 bar/-100 kPa		
-0.5 +0.5 bar/-50 +50 kPa	+35 bar/+3500 kPa	-1 bar/-100 kPa		
Absolute pressure	·			
0 1 bar/0 100 kPa	35 bar/3500 kPa	0 bar abs.		
0 2.5 bar/0 250 kPa	50 bar/5000 kPa	0 bar abs.		
0 10 bar/0 1000 kPa	50 bar/5000 kPa	0 bar abs.		
0 25 bar/0 2500 kPa	50 bar/5000 kPa	0 bar abs.		

Nominal measuring ranges and overload capacity in psi

Nominal range	Overload capability	
	Maximum pressure	Minimum pressure
Gauge pressure		
0 +1.5 psig	+220 psig	-14.5 psig
0 +5 psig	+435 psig	-14.5 psig
0 +15 psig	+510 psig	-14.5 psig
0 +30 psig	+725 psig	-14.5 psig
0 +150 psig	+725 psig	-14.5 psig
0 +300 psig	+725 psig	-14.5 psig
-14.5 0 psig	+510 psig	-14.5 psig
-14.5 +20 psig	+725 psig	-14.5 psig
-14.5 +150 psig	+725 psig	-14.5 psig
-14.5 +300 psig	+725 psig	-14.5 psig
-3 +3 psig	+290 psi	-14.5 psig
-7 +7 psig	+525 psig	-14.5 psig
Absolute pressure		
0 15 psi	525 psi	0 psi
0 30 psi	725 psi	0 psi
0 150 psi	725 psig	0 psi
0 300 psi	725 psig	0 psi

Adjustment ranges

Specifications refer to the nominal measuring range, pressure values lower than -1 bar cannot be set

Min./Max. adjustment:

Percentage value-10 ... 110 %Pressure value-20 ... 120 %

Zero/Span adjustment:

ZeroSpan-120 ... +95 %

Difference between zero and span max. 120 % of the nominal range
 Max. permissible Turn Down Unlimited (recommended 20:1)

Switch-on phase

Start-up time with operating voltage U_B

 $- \ge 12 \text{ V DC}$ ≤ 9 s - < 12 V DC ≤ 22 s Staring current (for run-up time) ≤ 3.6 mA

Output variable

Output signal 4 ... 20 mA - passive

Connection technology Two-wire

Range of the output signal 3.8 ... 20.5 mA (default setting)

Signal resolution 0.3 µA

Fault signal, current output (adjustable) ≤ 3.6 mA, ≥ 21 mA, last measured value

Max. output current 21.5 mA

Load See load resistance under Power supply

Damping (63 % of the input variable), 0 ... 999 s

adjustable

Dynamic behaviour output

Dynamic characteristics depending on medium and temperature

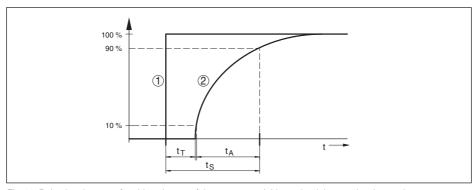


Fig. 26: Behaviour in case of sudden change of the process variable. $t_{r'}$ dead time; $t_{s'}$ rise time; $t_{s'}$ jump response time

- Process variable
- Output signal

	IPT-2x	IPT-2x - IP68 (25 bar)
Dead time	≤ 25 ms	≤ 50 ms
Rise time (10 90 %)	≤ 55 ms	≤ 150 ms
Step response time (ti: 0 s, 10 90 %)	≤ 80 ms	≤ 200 ms

Damping (63 % of the input variable)

0 ... 999 s, adjustable via menu item "Damping"

Reference conditions and influencing variables (according to DIN EN 60770-1)

Reference conditions according to DIN EN 61298-1

- Temperature +18 ... +30 °C (+64 ... +86 °F)

45 ... 75 % - Relative humidity

860 ... 1060 mbar/86 ... 106 kPa (12.5 ... 15.4 psi) - Air pressure

Determination of characteristics Limit point adjustment according to IEC 61298-2

Characteristic curve Linear

Reference installation position upright, diaphragm points downward

Influence of the installation position

- Piezoresistive/strain gauge measurdepending on the process fitting and the chemical seal ing cell

 Ceramic/metallic measuring cell < 5 mbar/0.5 kPa (0.07 psig)

Deviation in the current output due to $< \pm 150 \, \mu A$

strong, high-frequency electromagnetic

fields acc. to EN 61326-1

Deviation (according to IEC 60770-1)

Applies to the digital signal output (HART, Profibus PA, Foundation Fieldbus) as well as to the analogue current output 4 ... 20 mA and refers to the set span. Turn down (TD) is the ratio "nominal measuring range/set span".

The deviation corresponds to the value $F_{\kappa l}$ in chapter "Calculation of the total deviation". The value results out of the accuracy class and the respective turn down.

Accuracy class ¹³⁾	Non-linearity, hysteresis and repeatability with TD 1 : 1 up to 5 : 1	Non-linearity, hysteresis and repeatability with 5:1
0.075 %	< 0.075 %	< 0.015 % x TD
0.1 %	< 0.1 %	< 0.02 % x TD
0.2 %	< 0.2 %	< 0.04 % x TD

Influence of the medium or ambient temperature

Thermal change zero signal and output span through product temperature

Applies to the **digital** signal output (HART, Profibus PA, Foundation Fieldbus) as well as to the **analogue** current output 4 ... 20 mA and refers to the set span. Turn down (TD) is the ratio "nominal measuring range/set span".

The thermal change of the zero signal and output span corresponds to the value F_{τ} in chapter "Calculation of the total deviation (according to DIN 16086)".

Piezoresistive/strain gauge measuring cell

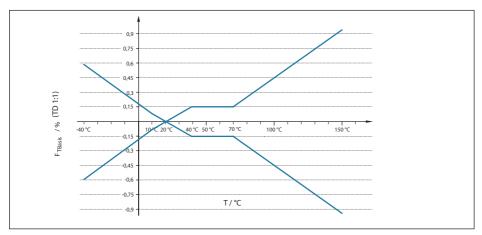


Fig. 27: Basic temperature error F_{TBasis} at TD 1:1

The basic temperature error in % from the above graphic can increase due to the additional factors such as accuracy class (factor FMZ) and Turn Down (factor FTD). The additional factors are listed in the following tables.

Additional factor through accuracy class

Accuracy class	0.075 %, 0.1 %	0.2 %
Factor FMZ	1	3

Additional factor through Turn Down

Different availability depending on measuring range and process fitting

The additional factor FTD through Turn down is calculated according to the following formula:

$$F_{TD} = 0.5 \times TD + 0.5$$

In the table, example values for typical Turn downs are listed.

Turn Down	TD 1:1	TD 2.5 : 1	TD 5 : 1	TD 10:1	TD 20 : 1
Factor FTD	1	1.75	3	5.5	10.5

Ceramic/metal measuring cell

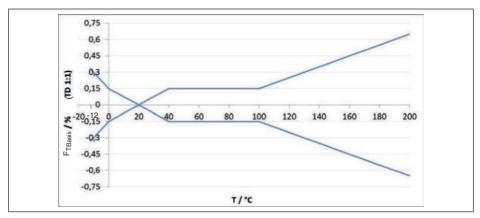


Fig. 28: Basic temperature error F_{TBasis} at TD 1:1

The basic temperature error in % from the above graphic can increase due to the additional factors depending on the accuracy class (factor FMZ) and Turn Down (factor FTD). The additional factors are listed in the following tables.

Additional factor through accuracy class

Accuracy class	Measuring cell - Standard	
Accuracy class	0.075 %, 0.1 % 0.2 %	
Factor FMZ	1	3

Additional factor through Turn Down

The additional factor FTD through Turn down is calculated according to the following formula:

$$F_{TD} = 0.5 \times TD + 0.5$$

In the table, example values for typical Turn downs are listed.

Turn down	TD 1:1	TD 2.5 : 1	TD 5:1	TD 10:1	TD 20 : 1
Factor FTD	1	1.75	3	5.5	10.5

Thermal change current output through ambient temperature

Applies also to the **analogue** 4 ... 20 mA current output and refers to the set span.

Thermal change, current output

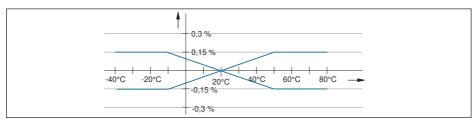


Fig. 29: Thermal change, current output

Long-term stability (according to DIN 16086)

Applies to the respective **digital** signal output (e.g. HART, Profibus PA) as well as to **analogue** current output 4 ... 20 mA under reference conditions. Specifications refer to the set span. Turn down (TD) is the ratio nominal measuring range/set span. 14)

Long-term staibility - Ceramic/metallic measuring cell

Time period	
One year	< 0.05 % x TD
Five years	< 0.1 % x TD
Ten years	< 0.2 % x TD

Long-term stability - Piezoresistive/Strain gauge measuring cell

Version	
Measuring ranges > 1 bar	< 0.1 % x TD/year
Measuring ranges > 1 bar, isolating liquid, synthetic oil, diaphragm Elgiloy (2.4711)	< 0.15 % x TD/year
Measuring range 1 bar	< 0.15 % x TD/year
Measuring range 0.4 bar	< 0.35 % x TD/year

Ambient conditions

Version	Ambient temperature	Storage and transport temperature
Standard version	-40 +80 °C (-40 +176 °F)	-60 +80 °C (-76 +176 °F)
Version IP66/IP68 (1 bar)	-20 +80 °C (-4 +176 °F)	-20 +80 °C (-4 +176 °F)
Version IP68 (25 bar), with connection cable PUR	-20 +80 °C (-4 +176 °F)	-20 +80 °C (-4 +176 °F)
Version IP68 (25 bar), connection cable PE	-20 +60 °C (-4 +140 °F)	-20 +60 °C (-4 +140 °F)

¹⁴⁾ With ceramic/metallic measuring cell with gold-coated diaphragm, the values must be multiplied with factor 3.

Process conditions - Piezoresistive/Strain gauge measuring cell

Process temperature

Seal	Sensor version				
	Standard	Extended tem- perature range	Hygieni	c fittings	Version for oxygen applications
	p _{abs} ≥ 1 r	nbar	p _{abs} ≥ 1 mbar	p _{abs} ≥ 10 mbar	p _{abs} ≥ 10 mbar
Without consideration of the seal ¹⁵⁾	-20/-40 +105 °C (-4/-40 +221 °F)	_	-	-	-20 +60 °C
FKM (VP2/A)	-20 +105 °C	-20 +150 °C	-20 +85 °C	-20 +150 °C	(-4 +140 °F)
EPDM (A+P 70.10-02)	(-4 +221 °F)		(-4 +185 °F)	(-4 +302 °F)	
FFKM (Perlast	-15 +105 °C	-15 +150 °C	-15 +85 °C	-15 +150 °C	-15 +60 °C
G75S)	(+5 +221 °F)	(+5 +302 °F)	(+5 +185 °F)	(+5 +302 °F)	(+5 +140 °F)
FEPM (Fluoraz SD890)	-5 +105 °C (+23 +221 °F)	-	_	-	-5 +60 °C (+23 +140 °F)

Temperature derating

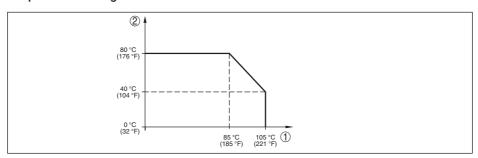


Fig. 30: Temperature derating IPT-2x, version up to +105 °C (+221 °F)

- 1 Process temperature
- 2 Ambient temperature

¹⁵⁾ Process fittings acc. to DIN 3852-A, EN 837

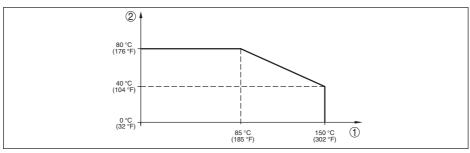


Fig. 31: Temperature derating IPT-2x, version up to +150 °C (+302 °F)

- 1 Process temperature
- 2 Ambient temperature

SIP process temperature (SIP = Sterilization in place)

Vapour stratification for 2 h^{16} +150 °C (+302 °F)

Process pressure

Permissible process pressure see specification "Process pressure" on the type label

Mechanical stress

	Without cooling zone		With cooling zone		
Version	All housing versions	Double cham- ber stainless steel housing	All housing ver- sions	Double cham- ber stainless steel housing	
Vibration resist- ance 1 to 4 g at 5 200 Hz accord- ing to EN 60068-2-6 (vibration with reso- nance)	4 g (GL characteristics 2)	0.7 g (GL characteristics 1)	4 g (GL characteristics 2)	0.7 g (GL characteristics 1)	
Shock resistance 2.3 ms according to EN 60068-2-27 (me- chanical shock)	50 g		50 g	20 g	

Process conditions - Ceramic/metallic measuring cell

Process temperature

Version	Temperature range		
	p _{abs} ≥ 50 mbar	p _{abs} ≥ 10 mbar	p _{abs} ≥ 1 mbar
Standard	-12 +150 °C	(+10 +284 °F)	
Extended temperature	-12 +180 °C (+10 +356 °F)	-12 +160 °C (+10 +320 °F)	-12 +120 °C (+10 +248 °F)
range	-12 +200 °C (+10 +392 °F)		(

Temperature derating

¹⁶⁾ Instrument configuration suitable for vapour

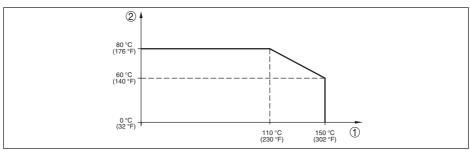


Fig. 32: Temperature derating IPT-2x, version up to +150 °C (+302 °F)

- 1 Process temperature
- 2 Ambient temperature

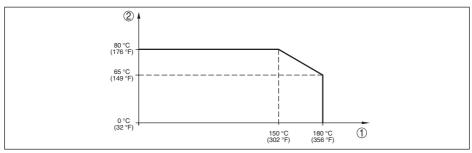


Fig. 33: Temperature derating IPT-2x, version up to +180 °C (+356 °F)

- 1 Process temperature
- 2 Ambient temperature

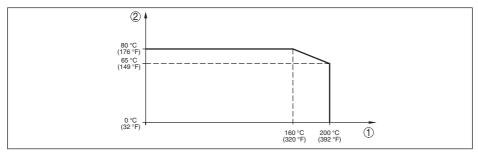


Fig. 34: Temperature derating IPT-2x, version up to +200 °C (+392 °F)

- 1 Process temperature
- 2 Ambient temperature

Process pressure

Permissible process pressure

see specification "Process pressure" on the type label

Mechanical stress¹⁷⁾

¹⁷⁾ Depending on the instrument version.

9 Supplement

Vibration resistance 1 to 4 g at

5 ... 200 Hz according to EN 60068-2-6

(vibration with resonance)

Shock resistance 50 g, 2.3 ms according to EN 60068-2-27 (mechanical

shock)18)

4 g

Electromechanical data - version IP66/IP67 and IP66/IP68 (0.2 bar)¹⁹⁾

Options of the cable entry

Cable entry
 M20 x 1.5; ½ NPT

Cable gland
 M20 x 1.5, ½ NPT (cable ø see below table)

− Blind plug M20 x 1.5; ½ NPT

- Closing cap ½ NPT

Material cable gland/Seal insert	Cable diameter			
	5 9 mm	6 12 mm	7 12 mm	10 14 mm
PA/NBR	•	•	-	•
Brass, nickel-plated/NBR	•	•	-	-
Stainless steel/NBR	-	-	•	-

Wire cross-section (spring-loaded terminals)

Massive wire, stranded wire
 Stranded wire with end sleeve
 0.2 ... 2.5 mm² (AWG 24 ... 14)
 0.2 ... 1.5 mm² (AWG 24 ... 16)

Electromechanical data - version IP66/IP68 (1 bar)

Connection cable, mechanical data

Configuration
 Wires, breather capillaries, strain relief, screen braiding,

metal foil, mantle

Standard length
 Min. bending radius (at 25 °C/77 °F)
 5 m (16.4 ft)
 25 mm (0.984 in)

- Diameter approx. 8 mm (0.315 in)

Colour - version PEBlackColour - version PURBlue

Connection cable, electrical data

 $\begin{array}{lll} - \mbox{ Wire cross-section} & 0.5 \mbox{ mm}^2 \mbox{ (AWG 20)} \\ - \mbox{ Wire resistance R} & 0.037 \mbox{ } \Omega/\mbox{m} \mbox{ (0.012 } \Omega/\mbox{ft)} \end{array}$

Electromechanical data - version IP68 (25 bar)

Connection cable transmitter - external housing, mechanical data

Configuration
 Wires, strain relief, breather capillaries, screen braiding,

metal foil, mantle²⁰⁾

- Standard length 5 m (16.40 ft)

^{18) 2} g with housing version stainless steel double chamber

¹⁹⁾ IP66/IP68 (0.2 bar), only with absolute pressure.

²⁰⁾ Breather capillaries not with Ex-d version.

9 Supplement

 Max. length 	180 m (590.5 ft)
- Min. bending radius at 25 °C/77 °F	25 mm (0.985 in)

- Diameter approx. 8 mm (0.315 in)

MaterialColourBlack, blue

Connection cable transmitter - external housing, electrical data – Wire cross-section 0.5 mm 2 (AWG 20) – Wire resistance 0.037 Ω /m (0.012 Ω /ft)

Display and a	djustment module
---------------	------------------

Measured value indication

Number of digits

Adjustment elements

- 4 keys [OK], [->], [+], [ESC]

Protection rating

unassembled IP20Mounted in the housing without lid IP40

Materials

- Housing ABS

Inspection windowFunctional safetyPolyester foilSIL non-reactive

Additional output parameter - Electronics temperature

Range	-40 +85 °C (-40 +185	°F)
-------	----------------------	-----

Resolution < 0.1 K
Deviation ±3 K

Output of the temperature values

Indication
 Via the display and adjustment module

Output
 Via the respective output signal

Voltage supply

Operating voltage U _B	9.6 .	35 V DC
Operating voltage II. with lighting	16	25 V DC

Operating voltage U_B with lighting

switched on

16 ... 35 V DC

Reverse voltage protection Integrated

Permissible residual ripple

 $\begin{array}{ll} - \text{ for } U_{N} \text{ 12 V DC } (9.6 \text{ V} < U_{B} < 14 \text{ V}) & \leq 0.7 \text{ V}_{\text{eff}} (16 \dots 400 \text{ Hz}) \\ - \text{ for } U_{N} \text{ 24 V DC } (18 \text{ V} < U_{B} < 35 \text{ V}) & \leq 1.0 \text{ V}_{\text{eff}} (16 \dots 400 \text{ Hz}) \end{array}$

Load resistor

- Calculation (U_R - U_{min})/0.022 A

- Example - with $U_R = 24 \text{ V DC}$ (24 V - 9.6 V)/0.022 A = 655 Ω

Potential connections and electrical separating measures in the instrument

Electronics Not non-floating

Reference voltage²¹⁾ 500 V AC

Conductive connection Between ground terminal and metallic process fitting

Electrical protective measures

Housing material	Version	Protection acc. to IEC 60529	Protection acc. to NEMA
Plastic		IP66/IP67	Type 4x
Aluminium		IP66/IP67	Type 4x
		IP66/IP68 (0.2 bar)	Type 6P
Stainless steel (electro-polished)	Single chamber	IP66/IP67	Type 4x
		IP69K	-
Stainless steel (precision cast-		IP66/IP67	Type 4x
ing)		IP66/IP68 (0.2 bar)	Type 6P
Stainless steel	Transmitter for external housing	IP68 (25 bar)	-

Altitude above sea level

by default up to 2000 m (6562 ft)

 with connected overvoltage protection up to 5000 m (16404 ft) on the master sensor

Pollution degree²²⁾ 4
Protection rating (IEC 61010-1) II

9.2 Calculation of the total deviation

The total deviation of a pressure transmitter indicates the maximum measurement error to be expected in practice. It is also called maximum practical deviation or operational error.

According to DIN 16086, the total deviation F_{total} is the sum of the basic deviation F_{perf} and the long-term stability F_{ctab} :

The basic deviation F_{perf} consists of the thermal change of the zero signal and the output span F_{τ} as well as the deviation F_{w} :

$$F_{perf} = \sqrt{((F_{T})^{2} + (F_{KI})^{2})}$$

The thermal change of zero signal and output span F_{τ} is specified in chapter "*Technical data*". The basic temperature error F_{τ} is shown in a graphic. Depending on the measuring cell version and Turn down, this value must be multiplied with the additional factors FMZ and FTD:

Also these values are specified in chapter "Technical data".

This applies for a digital signal output through HART, Profibus PA or Foundation Fieldbus.

With a 4 ... 20 mA output, the thermal change of the current output F_a must be added:

$$F_{perf} = \sqrt{((F_T)^2 + (F_{KI})^2 + (F_a)^2)}$$

²¹⁾ Galvanic separation between electronics and metal housing parts

²²⁾ When used with fulfilled housing protection.

To provide a better overview, the formula symbols are listed together below:

- F_{total}: Total deviation

- For: Basic deviation
 F_{stab}: Long-term stability
 F_T: Thermal change of zero signal and output span (temperature error)
- F_k: Deviation
- F: Thermal change of the current output
- FMZ: Additional factor measuring cell version
- FTD: Additional factor Turn down

Calculation of the total deviation - Practical example 9.3

Data

Pressure measurement in the pipeline 4 bar (400 KPa), product temperature 40 °C

IPT-2x with measuring range 10 bar, deviation < 0.1 %, process fitting G1 (piezoresistive measuring cell)

The required values for the temperature error F_{T} , deviation F_{KI} and long-term stability F_{stab} are available in the technical data.

1. Calculation of the Turn down

TD = 10 bar/4 bar, TD = 2.5 : 1

2. Determination temperature error F_T

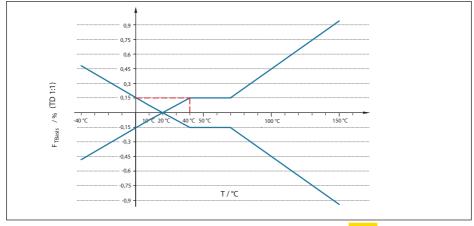


Fig. 35: Determination of the basic temperature error for the above example: $F_{TBasis} = \frac{0.15 \%}{100}$

Accuracy class	In the compensated temperature range of 10 +70 °C		
	0.075 %, 0.1 % 0.2 %		
Factor FMZ	1	3	

Tab. 28: Determination of the additional factor measuring cell for above example: $F_{MZ} = \frac{1}{1}$

Turn Down	TD 1:1	TD 2.5 : 1	TD 5:1	TD 10:1	TD 20 : 1
Factor FTD	1	1.75	3	5.5	10.5

Tab. 29: Determination of the additional factor "turn down" for the above example: $F_{TD} = \frac{1.75}{1.75}$

$$F_{T} = F_{TBasis} \times F_{MZ} \times F_{TD}$$

 $F_{T} = 0.15 \% \times 1 \times 1.75$
 $F_{T} = 0.26 \%$

3. Determination of deviation and long-term stability

Accuracy class	Non-linearity, hysteresis and non-repeatability		
	TD ≤ 5:1	TD > 5:1	
0.075 %	< 0.075 %	< 0.015 % x TD	
0.1 %	< 0.1 %	< 0.02 % x TD	
0.2 %	< 0.2 %	< 0.04 % x TD	

Tab. 30: Determination of the deviation from table: $F_{\kappa_l} = 0.1 \%$

Version		
Measuring ranges > 1 bar	< 0.1 % x TD/year	
Measuring ranges > 1 bar, isolating liquid, synthetic oil, diaphragm Elgiloy (2.4711)	< 0.15 % x TD/year	
Measuring range 1 bar	< 0.15 % x TD/year	
Measuring range 0.4 bar	< 0.35 % x TD/year	

Tab. 31: Determination of the long-term stability from the table, consideration for one year: $F_{stab} = \frac{0.1 \% \times TD/year}{1.00}$

4. Calculation of the total deviation - 4 ... 20 mA signal

- 1. step: Basic deviation \mathbf{F}_{perf}

$$F_{perf} = \sqrt{((F_T)^2 + (F_{KI})^2 + (F_a)^2)}$$

$$F_{\tau} = 0.26 \%$$

$$F_{perf} = \sqrt{(0.26 \%)^2} + (0.1 \%)^2 + (0.15 \%)^2$$

$$F_{perf} = 0.32 \%$$

- 2. step: Total deviation F_{total}

$$F_{total} = F_{perf} + F_{stab}$$

$$F_{\text{stab}} = (0.05 \% \text{ x TD})$$

$$F_{\text{stab}} = (0.1 \% \times 2.5)$$

$$F_{stab} = 0.25 \%$$

$$F_{total} = 0.32 \% + 0.25 \% = 0.57 \%$$

The total deviation of the measurement is hence 0.57 %.

Deviation in bar: 0.57 % of 4 bar = 0.023 mbar

The example shows that the measurement error in practice can be considerably higher than the basic deviation. Reasons are temperature influence and Turn down.

9.4 Dimensions

Housing

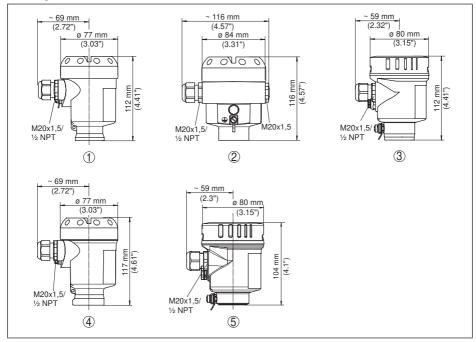


Fig. 36: Housing versions in protection IP66/IP67 and IP66/IP68 (0.2 bar)

- 1 Plastic single chamber (IP66/IP67)
- 2 Aluminium single chamber
- 3 Stainless steel single chamber (electropolished)
- 4 Stainless steel single chamber (precision casting)
- 5 Stainless steel single chamber (electropolished) IP69K

External housing with IP68 (25 bar) version

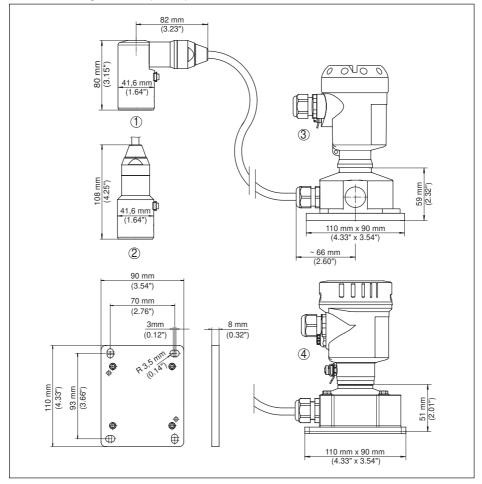


Fig. 37: IP68 version with external housing

- 1 Lateral cable outlet
- 2 Cable outlet axial
- 3 Plastic housing
- 4 Stainless steel housing, electropolished

IPT-2x, threaded fitting not front-flush

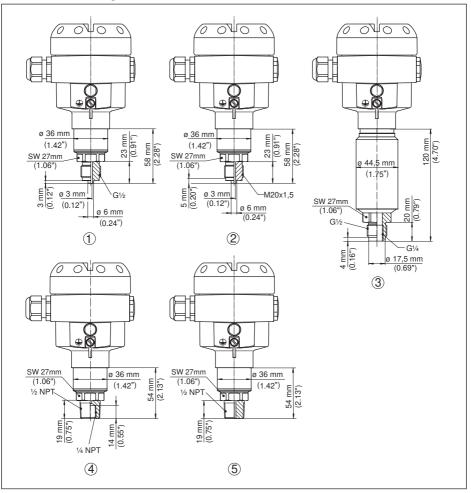


Fig. 38: IPT-2x, threaded fitting not front-flush

- 1 G½ manometer connection (EN 837)
- 2 M20 x 1.5 manometer connection (EN 837)
- 3 G1/2 A inside G1/4 (ISO 228-1)
- 4 1/2 NPT, inside 1/4 NPT (ASME B1.20.1)
- 5 1/2 NPT PN 1000

IPT-2x, threaded fitting front-flush

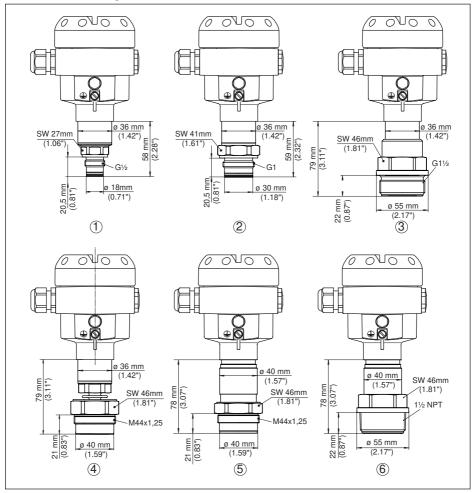
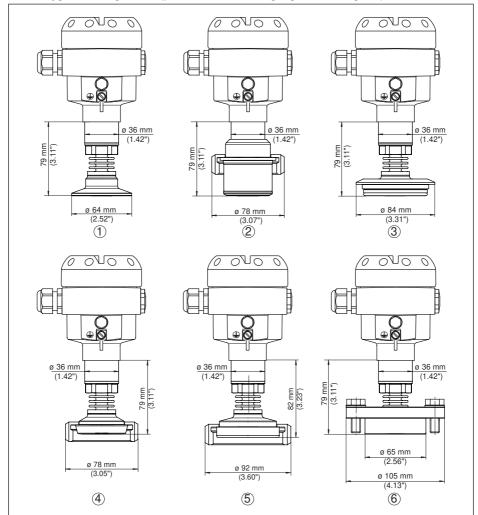
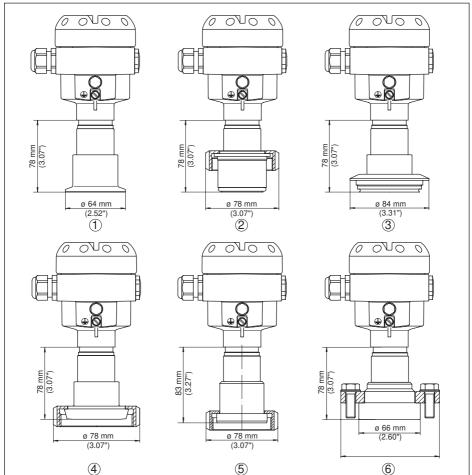



Fig. 39: IPT-2x, threaded fitting front-flush


- 1 G½ (ISO 228-1) with O-ring
- 2 G1 (ISO 228-1) with O-ring
- 3 G11/2 (DIN3852-A)
- 4 M44 x 1.25
- 5 3 and 4 with temperature adapter and screen sheet for 180 °C/200 °C
- 5 1½ NPT (ASME B1.20.1)

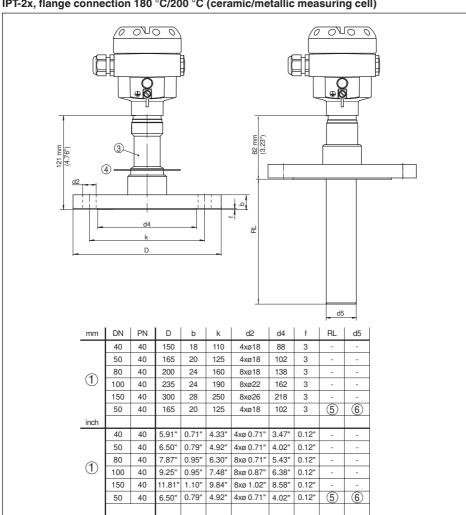
IPT-2x, hygienic fitting 150 °C (piezoresistive/strain gauge measuring cell)

Fig. 40: IPT-2x, hygienic fitting 150 °C (piezoresistive/strain gauge measuring cell)

- 1 Clamp 2" PN16 (ø64mm) DIN 32676, ISO 2852
- 2 Hygienic fitting with compression nut F 40 PN 25
- 3 Varivent N 50-40 PN 25
- 4 Collar socket DN 40 PN 40, DIN 11851
- 5 Collar socket DN 50 PN 25 Form A, DIN 11864
- 6 DRD PN 40

IPT-2x, hygienic fitting 150 °C (metallic/ceramic measuring cell)

Fig. 41: IPT-2x, hygienic fitting 150 °C (metallic/ceramic measuring cell)


- 1 Clamp 2" PN16 (ø64mm) DIN 32676, ISO 2852
- 2 Hygienic fitting with compression nut F 40 PN 25
- 3 Varivent N 50-40 PN 25
- 4 Collar socket DN 40 PN 40. DIN 11851
- 5 Collar socket DN 50 PN 25 Form A, DIN 11864
- 6 DRD PN 40

IPT-2x, flange connection 150 °C (piezoresistive/strain gauge measuring cell)

Fig. 42: IPT-2x, flange connection 150 °C (piezoresistive/strain gauge measuring cell)

- 1 Flange connection according to DIN 2501
- 2 Flange connection according to ASME B16.5
- 3 Order-specific
- 4 Order-specific

IPT-2x, flange connection 180 °C/200 °C (ceramic/metallic measuring cell)

Fig. 43: IPT-2x, flange connection 180 °C/200 °C (ceramic/metallic measuring cell)

5.91" 0.77" 4.75"

7.48" 0.96"

Flange connection according to DIN 2501

(2)

2 Flange connection according to ASME B16.5

2" 150 lbs

3" 150 lbs

- 3 Temperature adapter up to 180 °C
- 4 Temperature screen sheet up to 200 °C
- 5 Order-specific
- Order-specific

For the version with "Second Line of Defense", the measure of length increases by 17 mm (0.67 in).

4xø 0.75" 3.62"

4xø 0.75"

6"

0.12"

0.12"

9.5 Trademark

All the brands as well as trade and company names used are property of their lawful proprietor/originator.

INDEX

A

Adjustment 30, 34

- Process pressure 33
- -System 28
- Unit 31

C

Change the language 36 Check output signal 45 Connection cable 21 Connection procedure 22 Connection technology 22 Copy sensor settings 40 Current output 35, 36, 41

D

Damping 35 Default values 38 Display lighting 37

E

Electronics and connection compartment single chamber housing 24, 26 Error codes 43, 44, 45

F

Fault

Rectification 45Fault rectification 45Functional principle 9

G

Grounding 21

L

Linearisation 35

M

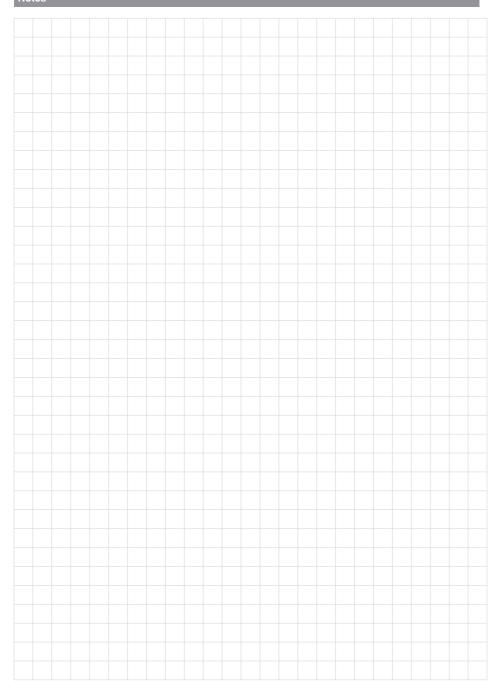
Maintenance 43 Measurement setup 17, 18, 19

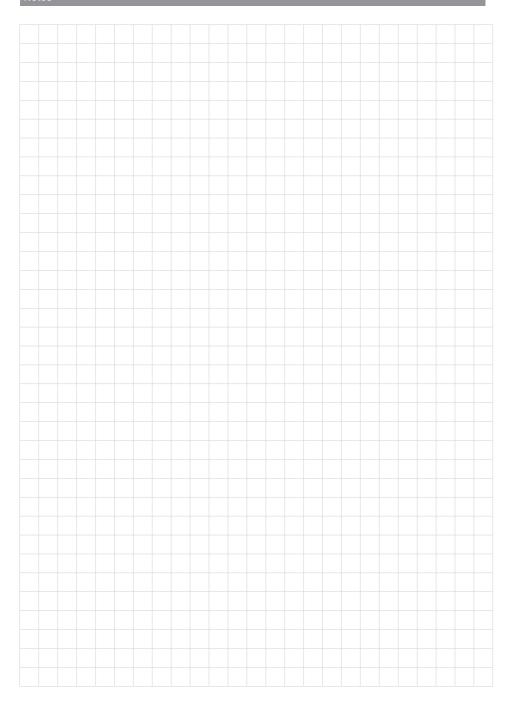
0

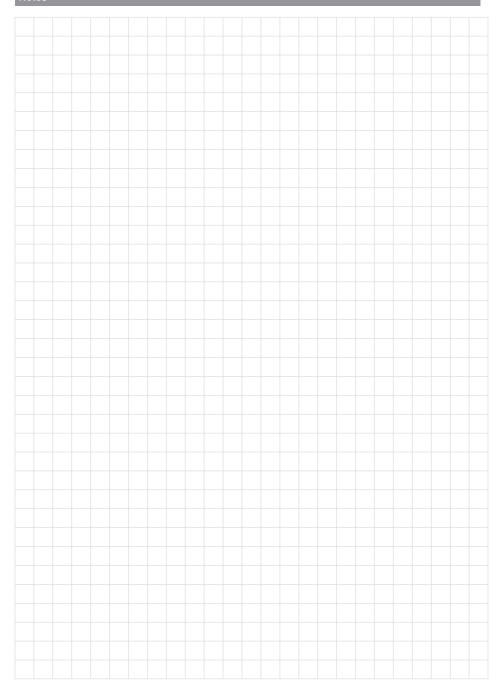
Oxygen applications 15

P

Parameterization example 32 Peak value indicator 37 Position correction 31 Pressure compensation 17 – Ex d 16 -Standard 16


Process pressure measurement 18


R


Reset 38

S

Seal concept 10 Service access 41 Set display parameters 36, 37 Simulation 38

Printing date: