

SIEMENS

Coriolis flowmeters SITRANS MASS 2100 & FC300 (FCT010/DSL)

Operating Instructions

Introduction	1
Safety notes	2
Description	3
Installing/mounting	4
Connecting	5
Commissioning	6
Operating FCT010	7
Parameter assignment FCT010	8
Service and maintenance	9
Diagnostics and troubleshooting FCT010	10
Technical data	11
Dimension drawings	12
Product documentation and support	Α
Technical reference	В
Modbus communication FCT010	С

7ME481 (MASS 2100/FC300 with FCT010/DSL)

ICS Schneider Messtechnik GmbH Briesestraße 59 D-16562 Hohen Neuendorf / OT Bergfelde

Tel.: 03303 / 504066 Fax: 03303 / 504068

Legal information

Warning notice system

This manual contains notices you have to observe in order to ensure your personal safety, as well as to prevent damage to property. The notices referring to your personal safety are highlighted in the manual by a safety alert symbol, notices referring only to property damage have no safety alert symbol. These notices shown below are graded according to the degree of danger.

🛕 DANGER

indicates that death or severe personal injury **will** result if proper precautions are not taken.

🛕 WARNING

indicates that death or severe personal injury may result if proper precautions are not taken.

A CAUTION

indicates that minor personal injury can result if proper precautions are not taken.

NOTICE

indicates that property damage can result if proper precautions are not taken.

If more than one degree of danger is present, the warning notice representing the highest degree of danger will be used. A notice warning of injury to persons with a safety alert symbol may also include a warning relating to property damage.

Qualified Personnel

The product/system described in this documentation may be operated only by **personnel qualified** for the specific task in accordance with the relevant documentation, in particular its warning notices and safety instructions. Qualified personnel are those who, based on their training and experience, are capable of identifying risks and avoiding potential hazards when working with these products/systems.

Proper use of Siemens products

Note the following:

A WARNING

Siemens products may only be used for the applications described in the catalog and in the relevant technical documentation. If products and components from other manufacturers are used, these must be recommended or approved by Siemens. Proper transport, storage, installation, assembly, commissioning, operation and maintenance are required to ensure that the products operate safely and without any problems. The permissible ambient conditions must be complied with. The information in the relevant documentation must be observed.

Trademarks

All names identified by [®] are registered trademarks of Siemens AG. The remaining trademarks in this publication may be trademarks whose use by third parties for their own purposes could violate the rights of the owner.

Disclaimer of Liability

We have reviewed the contents of this publication to ensure consistency with the hardware and software described. Since variance cannot be precluded entirely, we cannot guarantee full consistency. However, the information in this publication is reviewed regularly and any necessary corrections are included in subsequent editions.

Table of contents

1	Introductio	n	7
	1.1	Document history	7
	1.2	Product compatibility FCT010	8
	1.3	Items supplied: Sensors	8
	1.4	Items supplied: Transmitter	9
	1.5	Checking the consignment	. 10
	1.6	Security information	. 10
	1.7	Transportation and storage	. 11
2	Safety note	•5	. 13
	2.1	Preconditions for use	. 13
	2.2 2.2.1 2.2.2	Laws and directives FCC Conformity Conformity with European directives	. 14
	2.3	Requirements for special applications	. 15
	2.4	Use in hazardous areas	. 15
3	Description		. 17
	3.1	Overview	. 17
	3.2	System integration	. 17
	3.3	Modbus RTU technology FCT010	. 17
	3.4 3.4.1	Design Sensor design	
	3.5 3.5.1 3.5.2 3.5.3	Nameplate layout MASS 2100 Sensor nameplate FC300 Sensor nameplate FCT010 Transmitter nameplates	. 21 . 23
	3.6	Features FCT010	. 25
	3.7	Applications	. 26
	3.8	Approvals	. 26
4	Installing/n	nounting	. 27
	4.1 4.1.1 4.1.2	Basic safety notes Installation location requirements Proper mounting	. 28
	4.2 4.2.1	Installation instructions Transmitter installation	

	4.2.2 4.2.2.1	Sensor installation Determining a location	31
	4.2.2.2 4.2.2.3	Orientation of the sensor MASS 2100 DI 1.0 - 2.1	
	4.2.2.5	MASS 2100 DI 1.0 - 2.1 MASS 2100 DI 3 - 15	
	4.2.2.5	Installation in a drop line	
	4.2.2.6	Mounting the sensor	
	4.2.2.7	Hydrostatic testing	
	4.2.2.8	Mounting a pressure guard	
	4.3	Disassembly	39
5	Connecting]	41
	5.1	Basic safety notes	41
	5.2	Wiring	44
	5.3	Connecting MASS 2100/FC300	44
	5.3.1	Setting the EOL termination DIP switches FCT010	
6	Commissio	ning	49
	6.1	Basic safety notes	49
	6.2	General requirements	50
	6.3	Remote commissioning with PDM FCT010	
	6.3.1	Functions in SIMATIC PDM	
	6.3.2	Commissioning steps	
	6.3.3	Initial setup	
	6.3.4	Adding a device to communication network	
	6.3.5	Configuring a new device	
	6.3.6 6.3.7	Wizard - Quick Start via PDM Wizard - Zero Point Adjustment	
	6.3.8	Changing parameter settings using SIMATIC PDM	
	6.3.9	Parameters accessed via drop-down menus	
	6.3.10	Process values	
7	Operating	FCT010	69
	7.1	Remote operation	69
	7.1.1	Overview of device configuration software	
	7.1.2	SIMATIC PDM	
	7.1.2.1	Overview SIMATIC PDM	
	7.1.2.2	Check SIMATIC PDM version	
	7.1.2.3	Updating the Electronic Device Description (EDD)	
	7.1.2.4	Set address	
8	Parameter	assignment FCT010	73
	8.1	Functions	
	8.1.1	Process values	
	8.1.2	Zero point adjustment	
	8.1.3 8.1.4	Low flow cut-off Empty tube monitoring	
	8.1.4 8.1.5	Process noise damping	
	8.1.6	Totalizer	
	8.1.7	Security	
		2	

	8.1.8 8.1.9 8.1.10	Simulation Changing Modbus communication settings Float transmission	83
9		d maintenance	
	9.1	Basic safety notes	85
	9.2	Recalibration	86
	9.3 9.3.1	Cleaning Electrostatic charge	
		5	
	9.4 9.4.1 9.4.2	Maintenance and repair work Maintenance information FCT010 Service information FCT010	89
	9.5	Replacing the device	90
	9.6 9.6.1 9.6.2 9.6.3	Spare parts/Accessories Ordering of spare parts Ex-approved products Replaceable components	90 91
	9.7	Transportation and storage	92
	9.8	Return procedure	
	9.9	Disposal	93
10	Diagnostic	s and troubleshooting FCT010	95
	10.1	Device status symbols	
	10.2 10.2.1 10.2.2	Fault codes and corrective actions Diagnostics Alarm messages	96
	10.3 10.3.1 10.3.2 10.3.2.1 10.3.2.2 10.3.2.3 10.3.2.4	Operation troubleshooting Updating the firmware Troubleshooting sensor-related problems Step 1: Inspecting the application Step 2: Performing a zero point adjustment Step 3: Calculating the measurement error Step 4: Improving the application	99 101 102 102 102
	10.4	Diagnosing with PDM	105
11	Technical o	lata	107
	11.1	Power	107
	11.2	Performance	107
	11.3	Construction	110
	11.4	Design	111
	11.5	Basic electrical requirement for master system	112
	11.6	Cables and cable entries	112
	11.7	Operating conditions	113

	11.8	Process variables FCT010	114
	11.9	Approvals note	114
	11.10	Certificates and approvals	114
	11.11	SensorFlash	116
	11.12	Modbus Communication Specification	117
	11.13	PED	117
	11.14 11.14.1 11.14.2	Pressure - temperature ratings Pressure - temperature ratings (stainless steel sensors) Pressure - temperature ratings (Hastelloy sensors)	123
12	Dimension	drawings	127
	12.1	FC300 dimensions	127
	12.2	MASS 2100 dimensions	129
	12.3	Transmitter dimensions	135
Α	Product do	cumentation and support	137
	A.1	Product documentation	137
	A.2	Technical support	138
В	Technical re	eference	139
В	Technical r e B.1	eference Theory of operation	
В	B.1 B.2	Theory of operation Sensor dimension dependent default settings	139 140
В	B.1 B.2 B.2.1	Theory of operation Sensor dimension dependent default settings Mass flow	139 140 140
В	B.1 B.2 B.2.1 B.2.2	Theory of operation Sensor dimension dependent default settings Mass flow Volume flow	139 140 140 141
В	B.1 B.2 B.2.1	Theory of operation Sensor dimension dependent default settings Mass flow	139 140 140 141 142
В	B.1 B.2 B.2.1 B.2.2 B.2.3	Theory of operation Sensor dimension dependent default settings Mass flow Volume flow Standard volume flow	
В	B.1 B.2 B.2.1 B.2.2 B.2.3 B.2.4	Theory of operation Sensor dimension dependent default settings Mass flow Volume flow Standard volume flow Fraction	
В	B.1 B.2 B.2.1 B.2.2 B.2.3 B.2.4 B.2.5	Theory of operation Sensor dimension dependent default settings Mass flow Volume flow Standard volume flow Fraction Zero point adjustment	
В	B.1 B.2 B.2.1 B.2.2 B.2.3 B.2.4 B.2.5 B.3	Theory of operation Sensor dimension dependent default settings Mass flow Volume flow Standard volume flow Fraction Zero point adjustment Exception handling	
B	B.1 B.2 B.2.1 B.2.2 B.2.3 B.2.4 B.2.5 B.3 B.4 B.5	Theory of operation Sensor dimension dependent default settings Mass flow Volume flow Standard volume flow Fraction Zero point adjustment Exception handling Float definition	139 140 140 141 142 143 145 145 146 146
	B.1 B.2 B.2.1 B.2.2 B.2.3 B.2.4 B.2.5 B.3 B.4 B.5	Theory of operation Sensor dimension dependent default settings Mass flow Volume flow Standard volume flow Fraction Zero point adjustment Exception handling Float definition	
	 B.1 B.2 B.2.1 B.2.2 B.2.3 B.2.4 B.2.5 B.3 B.4 B.5 Modbus co 	Theory of operation Sensor dimension dependent default settings Mass flow Volume flow Standard volume flow Fraction Zero point adjustment Exception handling Float definition CRC calculation mmunication FCT010	
	B.1 B.2 B.2.1 B.2.2 B.2.3 B.2.4 B.2.5 B.3 B.4 B.5 Modbus co C.1	Theory of operation Sensor dimension dependent default settings Mass flow Volume flow Standard volume flow Fraction Zero point adjustment Exception handling Float definition CRC calculation mmunication FCT010 Modbus addressing model	
	B.1 B.2 B.2.1 B.2.2 B.2.3 B.2.4 B.2.5 B.3 B.4 B.5 Modbus co C.1 C.2	Theory of operation	139 140 140 141 142 143 145 145 146 146 147 147 151 151

Introduction

These instructions contain all information required to commission and use the device. Read the instructions carefully prior to installation and commissioning. In order to use the device correctly, first review its principle of operation.

The instructions are aimed at persons mechanically installing the device, connecting it electronically, configuring the parameters and commissioning it, as well as service and maintenance engineers.

This document is delivered as standard in electronic media with the device. The latest version can be downloaded at www.siemens.com (<u>http://support.automation.siemens.com/WW/</u>view/en/60666565/134200).

1.1 Document history

The following table shows major changes in the documentation compared to the previous edition.

The most important changes in the documentation when compared with the respective previous edition are given in the following table.

Edition	Note	
06/2020	Second edition	
	Chapter Technical data (Page 107) updated	
	Overall revision of chapters and contents	
06/2017	First edition	

NOTICE	
Use in a domestic environment	
This Class A Group 1 equipment is intended for use in industrial a	reas.
In a domestic environment this device may cause radio interferer	ice.

1.3 Items supplied: Sensors

1.2 Product compatibility FCT010

Manual edition	Remarks	Device revision	Compatibility of device integ	gration package
06/2020	Manual upda- ted	Modbus RS-485 RTU FW: 4.xx.xx-xx HW revision: 3	SIMATIC PDM V8.2 Service Pack 1 or later	EDD: 2.00.01 or later
06/2017	New Hardware extending sen- sor sizes	Modbus RS485 RTU FW: 4.xx.xx-xx HW revision: 3	SIMATIC PDM V8.2 Service Pack 1	EDD: 2.00.xx or later

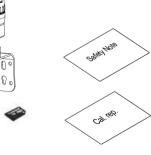
1.3 Items supplied: Sensors

- MASS 2100 DI 1.0, DI 1.5, DI 2.1
- Safety note
- SensorFlash
- Calibration certificate

- MASS 2100 DI 3, DI 6, DI 15
- Safety note
- SensorFlash
- Calibration certificate

- FC300 DN 4
- Safety note
- SensorFlash
- Calibration certificate

1.4 Items supplied: Transmitter


Compact system

- FCT010
- Packet of cable glands
- Calibration certificate
- SensorFlash

Remote system

- FCT010 remote field mount
- Packet of cable glands
- Calibration certificate

1.6 Security information

Note

Supplementary information

Supplementary product and production specific certificates are included on the SensorFlash[®] SD card which is delivered in a plastic bag.

Note

Scope of delivery may vary, depending on version and add-ons. Make sure the scope of delivery and the information on the nameplate correspond to your order and the delivery note.

1.5 Checking the consignment

- 1. Check the packaging and the delivered items for visible damages.
- 2. Report any claims for damages immediately to the shipping company.
- 3. Retain damaged parts for clarification.
- 4. Check the scope of delivery by comparing your order to the shipping documents for correctness and completeness.

🛕 WARNING

Using a damaged or incomplete device

Risk of explosion in hazardous areas.

• Do not use damaged or incomplete devices.

1.6 Security information

Siemens provides products and solutions with industrial security functions that support the secure operation of plants, systems, machines, and networks.

In order to protect plants, systems, machines and networks against cyber threats, it is necessary to implement – and continuously maintain – a holistic, state-of-the-art industrial security concept. Siemens' products and solutions form one element of such a concept.

Customers are responsible for preventing unauthorized access to their plants, systems, machines and networks. These systems, machines and components should only be connected to the enterprise network or the Internet if and only to the extent necessary and with appropriate security measures (firewalls and/or network segmentation) in place.

You can find more information on protective measures in the area of industrial security by visiting:

https://www.siemens.com/industrialsecurity.

Siemens' products and solutions undergo continuous development to make them more secure. Siemens strongly recommends performing product updates as soon as they are available and using only the latest product versions. Use of product versions that are no longer supported, and failure to apply latest updates may increase customer's exposure to cyber threats. To stay informed about product updates, subscribe to the Siemens Industrial Security RSS Feed under

https://www.siemens.com/industrialsecurity.

1.7 Transportation and storage

To guarantee sufficient protection during transport and storage, observe the following:

- Keep the original packaging for subsequent transportation.
- Devices/replacement parts should be returned in their original packaging.
- If the original packaging is no longer available, ensure that all shipments are properly packaged to provide sufficient protection during transport. Siemens cannot assume liability for any costs associated with transportation damages.

NOTICE

Insufficient protection during storage

The packaging only provides limited protection against moisture and infiltration.

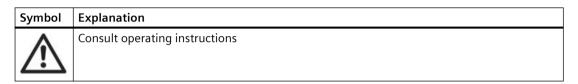
• Provide additional packaging as necessary.

Special conditions for storage and transportation of the device are listed in Technical data (Page 107).

The contents of this manual shall not become part of or modify any prior or existing agreement, commitment or legal relationship. The sales contract contains all obligations on the part of Siemens as well as the complete and solely applicable warranty conditions. Any statements regarding device versions described in the manual do not create new warranties or modify the existing warranty.

The content reflects the technical status at the time of publishing. Siemens reserves the right to make technical changes in the course of further development.

Introduction


1.7 Transportation and storage

Safety notes

2.1 Preconditions for use

This device left the factory in good working condition. In order to maintain this status and to ensure safe operation of the device, observe these instructions and all the specifications relevant to safety.

Observe the information and symbols on the device. Do not remove any information or symbols from the device. Always keep the information and symbols in a completely legible state.

🛕 WARNING

Improper device modifications

Risk to personnel, system and environment can result from modifications to the device, particularly in hazardous areas.

• Only carry out modifications that are described in the instructions for the device. Failure to observe this requirement cancels the manufacturer's warranty and the product approvals.

2.2 Laws and directives

Observe the safety rules, provisions and laws applicable in your country during connection, assembly and operation. These include, for example:

- National Electrical Code (NEC NFPA 70) (USA)
- Canadian Electrical Code (CEC) (Canada)

Further provisions for hazardous area applications are for example:

- IEC 60079-14 (international)
- EN 60079-14 (EU)

2.2 Laws and directives

2.2.1 FCC Conformity

US Installations only: Federal Communications Commission (FCC) rules

Note

- This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment.
- This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the operating instructions, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference to radio communications, in which case the user will be required to correct the interference at his own expense.

2.2.2 Conformity with European directives

The CE marking on the device symbolizes the conformity with the following European directives:

Electromagnetic compatibility EMC 2014/30/EU	Directive of the European Parliament and of the Council on the harmoni- sation of the laws of the Member States relating to electromagnetic com- patibility
Low voltage direc- tive LVD 2014/35/EU	Directive of the European Parliament and of the Council on the harmoni- sation of the laws of the Member States relating to the making available on the market of electrical equipment designed for use within certain voltage limits
Atmosphère explo- sible ATEX 2014/34/EU 2011/65/EU RoHS	Directive of the European Parliament and the Council on the harmonisa- tion of the laws of the Member States relating to equipment and protec- tive systems intended for use in potentially explosive atmospheres Directive of the European Parliament and the Council on the restriction of the use of certain hazardous substances in electrical and electronic equip- ment

The applicable directives can be found in the EC conformity declaration of the specific device.

Note

CE declaration

The CE declaration certificate is available on the SensorFlash SD card delivered with the device.

2.3 Requirements for special applications

Due to the large number of possible applications, each detail of the described device versions for each possible scenario during commissioning, operation, maintenance or operation in systems cannot be considered in the instructions. If you need additional information not covered by these instructions, contact your local Siemens office or company representative.

Note

Operation under special ambient conditions

We highly recommend that you contact your Siemens representative or our application department before you operate the device under special ambient conditions as can be encountered in nuclear power plants or when the device is used for research and development purposes.

2.4 Use in hazardous areas

Qualified personnel for hazardous area applications

Persons who install, connect, commission, operate, and service the device in a hazardous area must have the following specific qualifications:

- They are authorized, trained or instructed in operating and maintaining devices and systems according to the safety regulations for electrical circuits, high pressures, aggressive, and hazardous media.
- They are authorized, trained, or instructed in carrying out work on electrical circuits for hazardous systems.
- They are trained or instructed in maintenance and use of appropriate safety equipment according to the pertinent safety regulations.

🛕 WARNING

Use in hazardous area

Risk of explosion.

- Only use equipment that is approved for use in the intended hazardous area and labeled accordingly.
- Do not use devices that have been operated outside the conditions specified for hazardous areas. If you have used the device outside the conditions for hazardous areas, make all Ex markings unrecognizable on the nameplate.

2.4 Use in hazardous areas

Loss of safety of device with type of protection "Intrinsic safety Ex i"

If the device or its components have already been operated in non-intrinsically safe circuits or the electrical specifications have not been observed, the safety of the device is no longer ensured for use in hazardous areas. There is a risk of explosion.

- Connect the device with type of protection "Intrinsic safety" solely to an intrinsically safe circuit.
- Observe the specifications for the electrical data on the certificate and/or in Technical data (Page 107).

Description

3.1 Overview

SITRANS Coriolis flow meter systems consist of a transmitter and a sensor. The following table lists the available combinations of transmitters and sensors.

Transmitter	Sensor type
FCT010	MASS 2100
	FC300

3.2 System integration

The FCT010 transmitter functions as a Modbus RTU slave with standard Modbus commands implemented. Setup parameters, process values, diagnostics, and status information are mapped as Modbus registers.

The device can be connected point-to-point or in a multidrop network in non-hazardous or hazardous areas. It can be connected to different hosts for example a PLC system or a PC used as service tool or configuration tool.

Note

Multidrop installations in hazardous areas

Multidrop installations in hazardous areas require explosionproof conduit seals for each device in division 1 wiring.

For zone classified locations use of Ex-d cable gland can be used if permitted by national installation regulation.

The MASS2100 and FC300 7ME4817-... are preconfigured for integration with the SITRANS FCT070.

3.3 Modbus RTU technology FCT010

Modbus RTU is an open serial protocol based on master/slave architecture. The protocol interconnects field equipment such as sensors, actuators, and controllers and is widely used in both process and manufacturing automation. The fieldbus environment is the base level group of digital networks in the hierarchy of plant networks.

3.4 Design

Features

The SITRANS F Modbus RTU communication complies with the Modbus Serial Line Protocol. Among other things this implies a master / slave protocol at level 2 of the OSI model. A node (the master) issues explicit commands to one of the slave nodes and processes responses. Slave nodes will not transmit data without a request from the master node, and do not communicate with other slaves.

Modbus is a mono master system, only one master can be connected at a time.

Unicast communication mode

In unicast mode (master/slave mode) the master sends a request to a specific slave device and waits a specified time for a response.

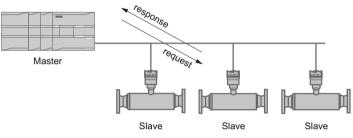


Figure 3-1 Unicast Mode

Modbus Frame

The Modbus frame is shown below and is valid for both requests and responses.

SLAVE ADDRESS	FUNCTION MODE	DATA	CRC
1 Byte	1 Byte	0 to 252 Bytes	2 Bytes

References

For further information, please refer to the following specification and guidelines available at the Modbus Organization (<u>http://www.modbus.org/</u>) website

- 1. Serial Line Specification & Implementation guide
- 2. Application Protocol Specification

3.4 Design

The SITRANS FC flowmeters use the Coriolis principle to measure flow and is available in a compact and a remote design.

Compact design

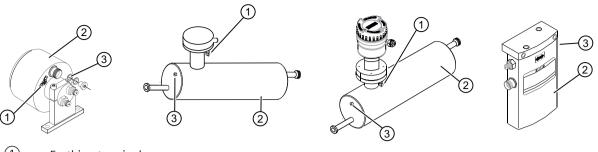
SITRANS MASS 2100 (Di 3, 6, 15) is a single mechanical unit where the transmitter is directly mounted on the sensor.

Remote design

SITRANS MASS 2100 (DI 1.5, 3, 6, 15) or FC300 (DN4) sensor unit is remotely connected to a SITRANS FCT010 transmitter.

3.4.1 Sensor design

All primary process measurement of mass flow, volume flow, density and medium temperature are made in the FCT010.


The sensor comprises one single continuous bended tube, with no internal welds. The sensor is available in an intrinsically safe (IS) design for hazardous area installations.

The sensors are available in AISI 316L stainless steel and Hastelloy C22 or C4. The enclosure is made of AISI 316L stainless steel.

The sensor enclosure can be equipped with a pressure guard or flushed with dry inert gas at the threaded ports for non-hazardous applications only.

In the remote configuration, the FCT010 is available in an aluminum enclosure with an ingress protection grade of IP67/NEMA 4X. For communication and power supply a 4-wire connection can be made via M12 plug and socket or cable gland/conduit entry for cable termination.

3.5 Nameplate layout

① Earthing terminal

2 Sensor enclosure

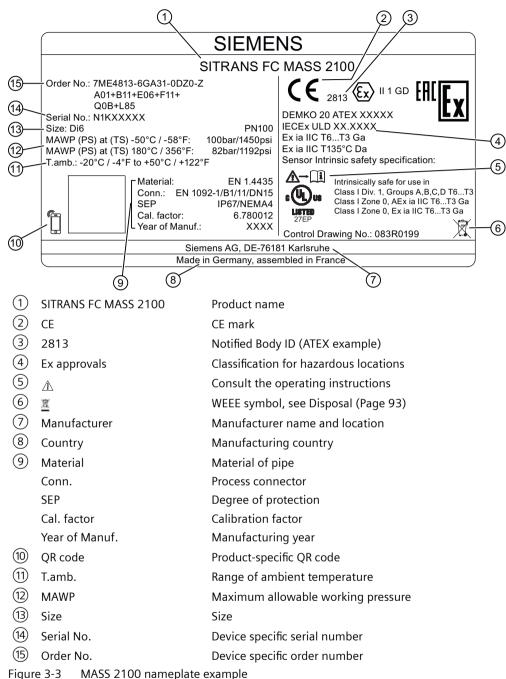
③ Plug and threaded port for e.g. pressure guard

Figure 3-2 Overview, remote and compact configuration

3.5 Nameplate layout

Each part of the FC Coriolis flowmeter has three nameplate types showing the following information:

- product identification
- product specifications
- certificates and approvals


Note

Identification

Identify your device by comparing your ordering data with the information on the product and specification nameplates.

3.5 Nameplate layout

3.5.1 MASS 2100 Sensor nameplate

MASS 2100 nameplate example

Flowmeter serial number construction

The flowmeter serial number is constructed as follows:

PPYMDDxxxxx

where PP = Production factory (Siemens S.A.S. Haguenau: N1) Description

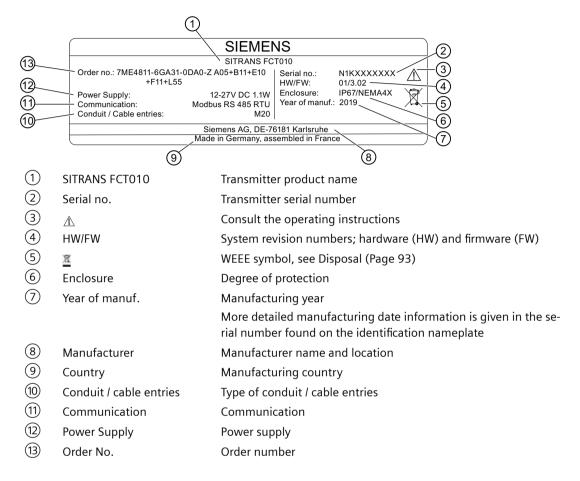
3.5 Nameplate layout

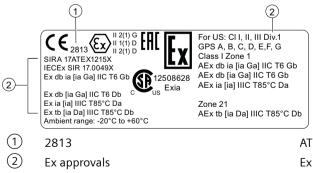

Y = Production year (for encryption, see below) M = Production month (for encryption, see below) DD = Production date (for encryption, see below) xxxxxx = Sequential number

Encryption:

Calendar year (Y)	Code
1950, 1970, 1990, 2010	A
1951, 1971, 1991, 2011	В
1952, 1972, 1992, 2012	С
1953, 1973, 1993, 2013	D
1954, 1974, 1994, 2014	E
1955, 1975, 1995, 2015	F
1956, 1976, 1996, 2016	H (G)
1957, 1977, 1997, 2017	J
1958, 1978, 1998, 2018	К
1959, 1979, 1999, 2019	L
1960, 1980, 2000, 2020	Μ
1961, 1981, 2001, 2021	Ν
1962, 1982, 2002, 2022	Р
1963, 1983, 2003, 2023	R
1964, 1984, 2004, 2024	S
1965, 1985, 2005, 2025	Т
1966, 1986, 2006, 2026	U
1967, 1987, 2007, 2027	V
1968, 1988, 2008, 2028	W
1969, 1989, 2009, 2029	Х
Month (M)	Code
January	1
February	2
March	3
April	4
May	5
June	6
July	7
August	8
September	9
October	0
November	Ν
December	D
Date (DD)	Code
Day 1 to 31	01 to 31 (corresponding to the actual date)

3.5 Nameplate layout


3.5.2 FC300 Sensor nameplate


3.5 Nameplate layout

3.5.3 FCT010 Transmitter nameplates

FCT010 transmitter: Nameplate with general information

FCT010 transmitter: Nameplate with specific information

ATEX Notified Body ID (SIRA Certification) Ex approval specifications for the transmitter (for details on all approvals refer to Disposal (Page 93))

Note

Approval identifications

Approval certificates and notified body identifications are available for download at www.siemens.com (<u>http://www.siemens.com/processinstrumentation/certificates</u>).

3.6 Features FCT010

- The SITRANS FCT010 can be used as Modbus slave in stand-alone or parallel operation on Modbus or third party automation systems
- Compact sensor design
- High immunity against process noise
- Fast response to step changes in flow
- High update rate (100 Hz) on all process values
- Measurement of:
 - Mass flow
 - Volume flow
 - Density
 - Medium temperature
- Independent low flow cut-off settings for massflow and volumeflow
- Automatic zero-point adjustment (initiated by host system)
- Process noise damping using digital signal processing (DSP).
- One totalizer for summation of massflow. The totalizer is reset on loss of power.
- Empty pipe monitoring
- Simulation of process values:
 - Mass flow
 - Volume flow
 - Density
 - Medium temperature
- Troubleshooting and sensor checking
- Use in hazardous areas according to specification
- Intelligent filtering system for aerated flow
- Unit selection of process values and totalizer

3.8 Approvals

3.7 Applications

The main applications of the Coriolis flowmeter can be found in all industries, such as:

- Chemical & Pharma: detergents, bulk chemicals, acids, alkalis, pharmaceuticals
- Food & Beverage: dairy products, beer, wine, soft drinks, fruit juices and pulps, bottling, CO₂ dosing, CIP/SIP-liquids, mixture recipe control
- Automotive: fuel injection nozzle & pump testing, filling of AC units, engine consumption, paint robots
- Oil & Gas: filling of gas bottles, furnace control, test separators, bore-hole plasticizer dosing, water-cut metering
- Water & Waste Water: dosing of chemicals for water treatment

3.8 Approvals

Note

For further details see Certificates and approvals (Page 114).

The device is available with approvals for general purpose and for hazardous areas. In all cases, check the nameplate on your device, and confirm the approval rating.

Installing/mounting

4.1 Basic safety notes

Hot surfaces resulting from hot process media

Risk of burns resulting from surface temperatures above 65 °C (149 °F).

- Take appropriate protective measures, for example contact protection.
- Make sure that protective measures do not cause the maximum permissible ambient temperature to be exceeded. Refer to the information in Technical data (Page 107).

Wetted parts unsuitable for the process media

Risk of injury or damage to device.

Hot, toxic and corrosive media could be released if the wetted parts are unsuitable for the process medium.

• Ensure that the material of the device parts wetted by the process medium is suitable for the medium. Refer to the information in Technical data (Page 107).

Note

Material compatibility

Siemens can provide you with support concerning selection of sensor components wetted by process media. However, you are responsible for the selection of components. Siemens accepts no liability for faults or failures resulting from incompatible materials.

🛕 WARNING

Unsuitable connecting parts

Risk of injury or poisoning.

In case of improper mounting, hot, toxic, and corrosive process media could be released at the connections.

• Ensure that connecting parts (such as flange gaskets and bolts) are suitable for connection and process media.

4.1 Basic safety notes

🛕 WARNING

Exceeded maximum permissible operating pressure

Risk of injury or poisoning.

The maximum permissible operating pressure depends on the device version, pressure limit and temperature rating. The device can be damaged if the operating pressure is exceeded. Hot, toxic and corrosive process media could be released.

Ensure that maximum permissible operating pressure of the device is not exceeded. Refer to the information on the nameplate and/or in Technical data (Page 107).

Incorrect mounting at Zone 0

Risk of explosion in hazardous areas.

- Ensure sufficient tightness at the process connection.
- Observe the standard IEC/EN 60079-14.

Loss of explosion protection

Risk of explosion in hazardous areas if the device is open or not properly closed.

• Close the device as described in Installing/mounting (Page 27).

A CAUTION

External stresses and loads

Damage to device by severe external stresses and loads (e.g. thermal expansion or pipe tension). Process media can be released.

• Prevent severe external stresses and loads from acting on the device.

4.1.1 Installation location requirements

NOTICE

Strong vibrations

Damage to device.

• In installations with strong vibrations, mount the transmitter in a low vibration environment.

4.1 Basic safety notes

NOTICE

Aggressive atmospheres

Damage to device through penetration of aggressive vapors.

• Ensure that the device is suitable for the application.

NOTICE

Direct sunlight

Damage to device.

The device can overheat or materials become brittle due to UV exposure.

- Protect the device from direct sunlight.
- Make sure that the maximum permissible ambient temperature is not exceeded. Refer to the information in Technical data (Page 107).

4.1.2 Proper mounting

NOTICE

Incorrect mounting

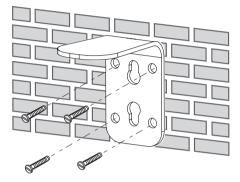
The device can be damaged, destroyed, or its functionality impaired through improper mounting.

- Before installing ensure there is no visible damage to the device.
- Make sure that process connectors are clean, and suitable gaskets and glands are used.
- Mount the device using suitable tools. Refer to the information in Technical data (Page 107).

🛕 WARNING

Loss of type of protection

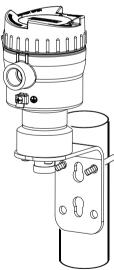
Risk of explosion. Damage to device if the enclosure is open or not properly closed. The type of protection specified on the nameplate or in Technical data (Page 107) is no longer guaranteed.


• Make sure that the device is securely closed.

4.2 Installation instructions

4.2.1 Transmitter installation

Wall mounting


1. Mount bracket on a wall using four screws.

2. Mount FCT010 on mounting bracket.

Pipe mounting

1. Mount bracket on a horizontal or a vertical pipe using ordinary hose clips or duct straps.

2. Mount FCT010 on mounting bracket.

4.2.2 Sensor installation

4.2.2.1 Determining a location

Electromagnetic fields

Do not install the flowmeter in the vicinity of strong electromagnetic fields, for example near motors, variable frequency drives, transformers etc.

Upstream / downstream

- No pipe run requirements, that is straight inlet/outlet sections, are necessary.
- Avoid long drop lines downstream from the sensor to prevent process media separation causing air / vapor bubbles in the tube (min. back pressure: 0.2 bar).
- Avoid installing the flowmeter immediately upstream of a free discharge in a drop line.

Location in the system

The optimum location in the system depends on the application:

- Liquid applications Gas or vapor bubbles in the fluid may result in erroneous measurements, particularly in the density measurement.
 - Do not install the flowmeter at the highest point in the system, where bubbles will be trapped.
 - Install the flowmeter in low pipeline sections, at the bottom of a U-section in the pipeline.

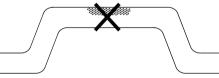


Figure 4-1 Liquid applications, wrong location with trapped air/gas

Gas applications

Vapor condensation or oil traces in the gas may result in erroneous measurements.

- Do not install the flowmeter at the lowest point of the system.
- Install a filter.

Figure 4-2 Gas applications, wrong location with trapped oil

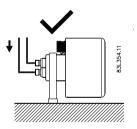
4.2.2.2 Orientation of the sensor

Flow direction

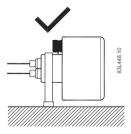
The calibrated flow direction is indicated by the arrow on the sensor. Flow in this direction will be indicated as positive by default. The sensitivity and the accuracy of the sensor do not change with reverse flow.

The indicated flow direction (positive/negative) is configurable.

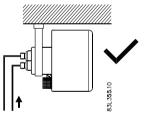
Accurate measurement

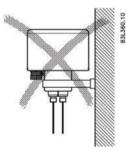

The sensor must always be completely filled with process media in order to measure accurately.

Orienting the sensor


The sensor operates in any orientation. The optimal orientation depends on the process fluid and the process conditions. Siemens recommends orienting the sensor in one of the following ways:

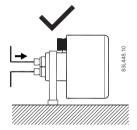
4.2.2.3 MASS 2100 DI 1.0 - 2.1


Liquid applications

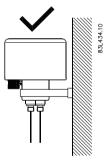

Horizontal installation, correct

Vertical installation, correct (liquids without solid particles only)

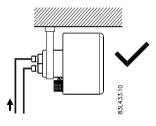
Horizontal installation, correct

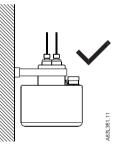


Vertical installation, wrong

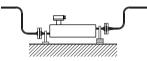

Note Air / gas bubbles in the liquid Install the flowmeter horizontally

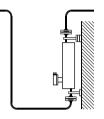
Note Solid particles in the liquid Install the flowmeter horizontally


Gas applications


Horizontal installation 1

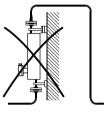
Vertical installation 1


Horizontal installation 2

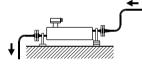

Vertical installation 2

4.2.2.4 MASS 2100 DI 3 - 15

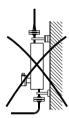
Liquid applications



Horizontal installation, correct

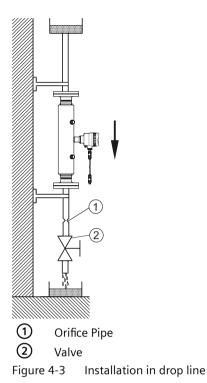

Vertical installation, correct

Horizontal installation, wrong



Vertical installation, wrong

Gas applications


Horizontal installation

Vertical installation (not recommended)

4.2.2.5 Installation in a drop line

Installation in a dropline is only possible if a pipeline reduction or orifice with a smaller crosssection can be installed to prevent the sensor from being partially drained during the measurements.

🛕 WARNING

Unsuitable connecting parts

Risk of injury or poisoning.

In case of improper mounting, hot, toxic, and corrosive process media could be released at the connections.

• Ensure that connecting parts (such as flange gaskets and bolts) are suitable for connection and process media.

4.2.2.6 Mounting the sensor

- Install the sensor in well-supported pipelines in order to support the weight of the flowmeter.
- Center the connecting pipelines axially in order to assure a stress-free installation. The flowmeter must not be used to bring the rest of the pipework into line; make sure the pipework is correctly aligned before inserting the flow sensor.
- Install two supports or hangers symmetrically and stress-free on the pipeline in close proximity to the process connections.

Note

Handling

Lift the flowmeter by the sensor body. Do not lift the flowmeter by the housing.

Avoid vibrations

- Make sure that any valves or pumps upstream of the sensor do not cavitate and do not send vibrations into the sensor.
- Decouple vibrating pipeline from the flow sensor using flexible tube or couplings.

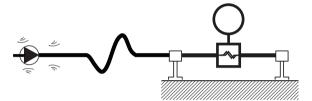


Figure 4-4 Avoid vibrations

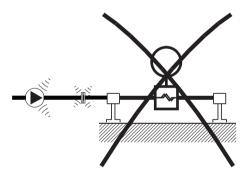


Figure 4-5 Non-flexible pipes not recommended in vibrating environment

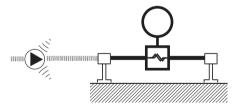


Figure 4-6 Flexible pipes recommended in vibrating environment

Avoid cross talk

When operating more than one flowmeter in one or multiple interconnected pipelines there is a risk of cross talk.

Prevent cross talk in one of the following ways:

- Mount sensors on separate frames
- Decouple the pipeline using flexible tubes or couplings

4.2 Installation instructions

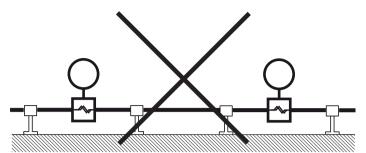


Figure 4-7 High risk of cross talk when using non-flexible pipes

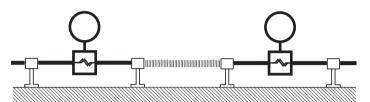


Figure 4-8 Low risk of cross talk when using flexible pipes and separate frames

4.2.2.7 Hydrostatic testing

The flowmeter is pressure-tested before delivery to 1.5 times the rated working pressure of the sensor.

- In the case of process connections pressure-rated less than 100 bar, the connection is the limiting component.
- In the case of process connections pressure-rated above 100 bar (stainless steel sensors) or above 160 bar (Hastelloy sensors), the sensor is the limiting component.

In all cases the maximum allowed hydrostatic test pressure (MATP) of the flowmeter is 1.5 times the marked MAWP (PS) at 20 $^{\circ}$ C.

Pressure test of a completed flow system with piping and other components can be done at pressures no higher than 1.5 times the marked MAWP (PS) at 20 $^{\circ}$ C of the lowest rated system component.

4.2.2.8 Mounting a pressure guard

Pressure guard selection

Siemens does not supply the components of the pressure guard solution because the arrangement and components are closely related to individual safety and protection practices in each place.

The selection of pressure guard solution is the responsibility of the user, however Siemens recommends the following forms of pressure guard:

- A pressure switch screwed directly or piped into one of the purge ports and connected to an automatic shut-off valve will disable pressurized supply to the meter.
- A relief valve or bursting disc screwed directly or piped to one of the purge ports to carry any spilt fluid to drain after opening.

4.2 Installation instructions

The pressure switch and relief valve set point should be 2-3 bar gauge. The pressure switch should be rated to withstand the full process pressure and temperature for a short time without rupture.

A CAUTION

Drain flow

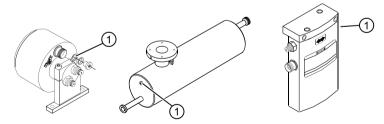
Ensure the drain flow is safely contained away from personnel and other plant or equipment.

Mounting of pressure guard

Non-hazardous areas only

The mounting of a pressure guard is only permitted in non-hazardous areas.

A CAUTION


Moisture, liquids or particles getting into the sensor enclosure

All sensors are filled with argon to avoid condensation. Ingress of moisture, liquids or particles into the sensor may influence the measurement and in worst case inhibit the measuring function.

• Avoid moisture, liquids or particles getting into the sensor enclosure

Install a pressure guard as follows:

- 1. Place the sensor in a dry, clean place and leave it to acclimatize until it reaches ambient temperature, preferred 20°C (68°F) with low humidity (at least below 50% RH).
- 2. Orient the sensor with the purge ports uppermost to minimize loss of the argon gas filling.
- 3. Carefully disconnect the nipple (see 1) in graphic below) and mount the pressure guard. Use the enclosed spare part sealing ring for proper sealing.

Make sure that the pressure guard does NOT touch any of the parts inside the sensor. Maximum of 20 mm (0.79") insertion can be accommodated.

4.3 Disassembly

A CAUTION

Lack of proper sealing

Soft metal sealing rings only maintain a hermetic seal within the enclosure with single use.

Ensure that soft metal sealing rings are not reused.

🛕 WARNING

Operation in proximity with pressure guards

Prevent personal injuries by assuring that operation in close proximity with pressure guards cannot take place.

4.3 Disassembly

🚺 DANGER

Pressure applications

Danger to personnel, system and environment will result from improper disassembly.

• Never attempt to loosen, remove, or disassemble process connection while vessel contents are under pressure.

🛕 WARNING

Incorrect disassembly

The following risks may result from incorrect disassembly:

- Injury through electric shock

- Risk through emerging media when connected to the process

- Risk of explosion in hazardous area

In order to disassemble correctly, observe the following:

- Before starting work, make sure that you have switched off all physical variables such as pressure, temperature, electricity etc. or that they have a harmless value.
- If the device contains hazardous media, it must be emptied prior to disassembly. Make sure that no environmentally hazardous media are released.
- Secure the remaining connections so that no damage can result if the process is started unintentionally.

Installing/mounting

4.3 Disassembly

Connecting

5.1 Basic safety notes

Unsuitable cables, cable glands and/or plugs

Risk of explosion in hazardous areas.

- Use only cable glands/plugs that comply with the requirements for the relevant type of protection.
- Tighten the cable glands in accordance with the torques specified in Technical data (Page 107).
- Close unused cable inlets for the electrical connections.
- When replacing cable glands, only use cable glands of the same type.
- After installation, check that the cables are seated firmly.

🛕 WARNING

Incorrect conduit system

Risk of explosion in hazardous areas as result of open cable inlet or incorrect conduit system.

• In the case of a conduit system, mount a spark barrier at a defined distance from the device input. Observe national regulations and the requirements stated in the relevant approvals.

NOTICE

Condensation in the device

Damage to device through formation of condensation if the temperature difference between transportation or storage and the mounting location exceeds 20 °C (36 °F).

• Before taking the device into operation, let the device adapt for several hours in the new environment.

NOTICE

Ambient temperature too high

Damage to cable sheath.

 At an ambient temperature ≥ 60 °C (140 °F), use heat-resistant cables suitable for an ambient temperature at least 20 °C (36 °F) higher.

A WARNING

Improper power supply

Risk of explosion in hazardous areas as result of incorrect power supply.

• Connect the device in accordance with the specified power supply and signal circuits. The relevant specifications can be found in the certificates, in Technical data (Page 107) or on the nameplate.

Lack of equipotential bonding

Risk of explosion through compensating currents or ignition currents through lack of equipotential bonding.

• Ensure that the device is potentially equalized.

Exception: It may be permissible to omit connection of the equipotential bonding for devices with type of protection "Intrinsic safety Ex i".

🛕 WARNING

Unprotected cable ends

Risk of explosion through unprotected cable ends in hazardous areas.

• Protect unused cable ends in accordance with IEC/EN 60079-14.

🛕 WARNING

Improper laying of shielded cables

Risk of explosion through compensating currents between hazardous area and the non-hazardous area.

- Shielded cables that cross into hazardous areas should be grounded only at one end.
- If grounding is required at both ends, use an equipotential bonding conductor.

🛕 WARNING

Insufficient isolation of intrinsically safe and non-intrinsically safe circuits

Risk of explosion in hazardous areas.

- When connecting intrinsically safe and non-intrinsically safe circuits ensure that isolation is carried out properly in accordance with local regulations for example IEC 60079-14.
- Ensure that you observe the device approvals applicable in your country.

🛕 WARNING

Connecting or disconnecting device in energized state

Risk of explosion in hazardous areas.

• Connect or disconnect devices in hazardous areas only in a de-energized state.

Exceptions:

• Devices having the type of protection "Intrinsic safety Ex i" may also be connected in energized state in hazardous areas.

🛕 WARNING

Incorrect selection of type of protection

Risk of explosion in areas subject to explosion hazard.

This device is approved for several types of protection.

- 1. Decide in favor of one type of protection.
- 2. Connect the device in accordance with the selected type of protection.
- 3. In order to avoid incorrect use at a later point, make the types of protection that are not used permanently unrecognizable on the nameplate.

Note

Electromagnetic compatibility (EMC)

You can use this device in industrial environments, households and small businesses.

For metal enclosures there is an increased electromagnetic compatibility compared to high-frequency radiation. This protection can be increased by grounding the enclosure.

See also

Basic safety notes (Page 41)

Note

Improvement of interference immunity

- Lay signal cables separate from cables with voltages > 60 V.
- Use cables with twisted wires.
- Keep device and cables at a distance from strong electromagnetic fields.
- Take account of the conditions for communication specified in the Technical data (Page 107).
- Use shielded cables to guarantee the full specification according to HART/PA/FF/Modbus/ EIA-485/Profibus DP.

5.3 Connecting MASS 2100/FC300

5.2 Wiring

Hazardous area applications

Special requirements apply to the location and interconnection of sensor and transmitter. See Use in hazardous areas (Page 15).

A WARNING

Transmitter enclosure

Before opening the terminal box check that:

- No explosion hazard exists
- All connection leads are potential free

5.3 Connecting MASS 2100/FC300

Improper handling

The sensor connected to this device can be operated with high pressure and corrosive media. Therefore improper handling of the device can lead to serious injuries and/or considerable material damage.

The device is optionally provided with a preformed cable terminated with M12 style stainless steel weather-proof plugs.

The cable shield is physically and electrically terminated within the body of the plug.

Take care when handling the cable and passing it through cable ducting. The plug is not subjected to excessive tension (pulling) as the internal connections may be disengaged.

Note

Never pull the cable by the plug.

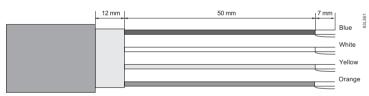
1. Connect the device using the supplied 4-wire cable with M12 plug.

Note

Grounding

The sensor cable screen is electrically connected to chassis, only when the M12 plug is correctly tightened.

Terminal number	Description	Wire color (Siemens cable)
1	15 V	Orange
2	0 V	Yellow
3	RS-485 / B	White
4	RS-485 / A	Blue


- Only use cables with at least the same degree of protection as the sensor to install the sensor. It is recommended to use cables supplied by Siemens.
- Siemens supplied cables can be ordered with M12 plug on one or both ends or without plug.
- To guarantee the IP67 degree of protection, ensure that both ends of the cables are given equivalent protection from ingress of moisture.
- For further information on Siemens-supplied cables, see Technical data (Page 107).

Cable requirements

Cables must be suitable for the temperature (at least 70 $^{\circ}$ C) and be flammability-rated to at least V-2.

A: Prepare the cable by stripping it at both ends.

B: Connect wires within the sensor terminal compartment

- 1. Remove the lock screw and remove the lid.
- 2. Undo the flexible strap.
- 3. Disconnect the sensor connection (white plug) from the electronic.
- 4. Loosen the mounting screw using a TX10 Torx driver and remove the electronic from the housing.
- 5. Remove the cap and the ferrule from the cable gland and slide onto the cable.
- 6. Push the cable through the open gland and anchor the cable shield and the wires with the clamp bar.
- 7. Remove the terminal block from the electronic.

5.3 Connecting MASS 2100/FC300

8. Connect the wires to the terminals according to the list below.

Terminal number	Description	Wire color (Siemens cable)
1	15 V	Orange
2	0 V	Yellow
3	RS-485 / B	White
4	RS-485 / A	Blue

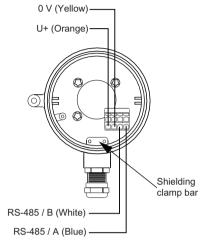
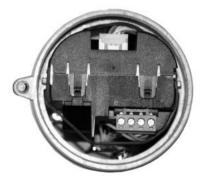



Figure 5-2 Sensor terminal compartment

- 9. Reinstall the electronic including the mounting screw.
- 10. Connect the sensor connection and the sensor cable.
- 11. Restore the flexible strap around all wires.

12. Assemble and tighten the cable gland.

13. Remove the O-ring from lid.

- 14. Reinstate the lid and screw in until the mechanical stop. Wind back the lid by one turn.
- 15. Mount the O-ring by pulling it over the lid and tighten the lid until you feel friction from the O-ring on both sides. Wind the lid by one quarter of a turn to seal on the O-ring.

16. Reinstate and tighten the lid lock screw.

🛕 WARNING

Unprotected cable ends

Risk of explosion through unprotected cable ends in hazardous areas.

• Protect unused cable ends in accordance with IEC/EN 60079-14.

5.3.1 Setting the EOL termination DIP switches FCT010

It is important to terminate the Modbus RS-485 line correctly at the start and end of the bus segment. Impedance mismatch results in reflections on the line which can cause faulty communication transmission.

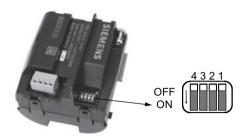
If the device is at the end of the bus segment, it is recommended to terminate the device. The following table shows the relation between the DIP switch settings and the permissible communication interface set-ups.

Note

End Of Line (EOL) termination

The FCT010 EOL termination DIP switch is default set to EOL non-active. If the installation requires active termination resistors, the DIP switches should be set to the EOL Active state.

CAUTION


Hazardous areas

Only change the DIP switches in hazardous areas when the device is deenergized.

5.3 Connecting MASS 2100/FC300

Location of DIP switch

The DIP switch is located in the electronic as shown below.

DIP switch settings for communication set-up

DIP switch Com- munication set- up	Switch 1	Switch 2	Switch 3	Switch 4
EOL active	On	On	On	On
EOL not active	On	On	Off	Off

NOTICE

Avoid DIP switch settings not mentioned in the table

DIP switch settings not mentioned in the table preceding are not allowed and may reduce communication interface reliability.

Commissioning

6.1 Basic safety notes

Improper commissioning in hazardous areas

Device failure or risk of explosion in hazardous areas.

- Do not commission the device until it has been mounted completely and connected in accordance with the information in Installing/mounting (Page 27).
- Before commissioning take the effect on other devices in the system into account.

MARNING

Commissioning and operation with pending error

If an error message appears, correct operation in the process is no longer guaranteed.

- Check the gravity of the error.
- Correct the error.
- If the error still exists:
 - Take the device out of operation.
 - Prevent renewed commissioning.

ANGER

Toxic gases and liquids

Danger of poisoning when venting the device: if toxic process media are measured, toxic gases and liquids can be released.

• Before venting ensure that there are no toxic gases or liquids in the device, or take the appropriate safety measures.

🛕 WARNING

Loss of explosion protection

Risk of explosion in hazardous areas if the device is open or not properly closed.

• Close the device as described in Installing/mounting (Page 27).

🛕 WARNING

Opening device in energized state

Risk of explosion in hazardous areas

- Only open the device in a de-energized state.
- Check prior to commissioning that the cover, cover locks, and cable inlets are assembled in accordance with the directives.

Exception: Devices having the type of protection "Intrinsic safety Ex i" may also be opened in energized state in hazardous areas.

Improper handling

The sensor connected to this device can be operated with high pressure and corrosive media. Therefore improper handling of the device can lead to serious injuries and/or considerable material damage.

6.2 General requirements

Before commissioning it must be checked that:

- The device has been installed and connected in accordance with the guidelines provided in Installing/mounting (Page 27) and Connecting (Page 41).
- Device installed in hazardous areas meets the requirements described in Use in hazardous areas (Page 15).

6.3 Remote commissioning with PDM FCT010

🛕 WARNING

Commissioning and operation with pending error

If an error message appears, correct operation in the process is no longer guaranteed.

- Check the gravity of the error.
- Correct the error.
- If the error still exists:
 - Take the device out of operation.
 - Prevent renewed commissioning.

6.3.1 Functions in SIMATIC PDM

SIMATIC PDM monitors the process values, alarms and status signals of the device. It allows you to display, compare, adjust, verify, and simulate process device data; also to set schedules for calibration and maintenance.

Parameters are identified by name and organized into function groups. See Modbus addressing model (Page 151) for more details.

See Modbus addressing model (Page 151) for parameters that do not appear in the menu structure in SIMATIC PDM.

6.3.2 Commissioning steps

In the following it is described how to commission the device with SIMATIC PDM.

The steps are divided into the following sections:

- 1. Initial setup (Page 51)
- 2. Adding device to the communication network (Page 53)
- 3. Configuring a new device (Page 56).
- 4. Wizard Quick start with PDM (Page 57)
- 5. Wizard Zero point adjustment (Page 62)

6.3.3 Initial setup

To ensure that SIMATIC PDM connects properly complete the two processes outlined below:

- 1. Deactivate buffers
- 2. Update the Electronic Device Description (EDD)

Deactivate buffers for RS-485 COM port

This deactivation is required to align SIMATIC PDM with the Modbus modem for Windows[®] operating systems.

Note

You can find support for Windows operating systems here: support.automation.siemens.com (<u>http://support.automation.siemens.com</u>)

- 1. Click "Start" > "Control Panel" to begin configuration.
- 2. Click on "Hardware and Sound" > "Device Manager".
- 3. Open "Ports" folder and double-click the COM Port used by the system to open the "Communications Port Properties" window.
- 4. Select the "Port Settings" tab and click the "Advanced" button.

- 5. If the "Use FIFO buffers" check box is deselected, click to select.
- 6. Set "Receiver Buffer" and "Transmitter Buffer" to Low (1).

Use FIFO b	uffers (requi	res 16550 co	mpatible UART)				ОК
			ection problems.				Cancel
Select high	er settings fi	or faster perfo	ormance.				Defaults
Receive Buffer.	Low (1)	0			High (14)	(1)	
Transmit Buffer:	Low (1)	Q			High (16)	(1)	

7. Click "OK" to close out. Close all screens and then reboot.

Update the Electronic Device Description (EDD)

You can locate the EDD in the SIMATIC PDM Device Library under "Devices" > "Modbus" > "Sensors" > "Flow" > "Coriolis" > "Siemens AG" > "SITRANS FC". Check the downloads on our website (<u>www.siemens.com/FC410</u>) to make sure you have the latest version of SIMATIC PDM, the most recent Service Pack (SP) and the most recent hot fix (HF).

Installing a new EDD:

- 1. Download the EDD from our website (<u>www.siemens.com/FC410</u>) and save the zip file to your computer.
- 2. Launch the SIMATIC PDM Device Integration Manager.
- 3. Browse to the zipped EDD file and select it.

6.3.4 Adding a device to communication network

Before setting the parameters, it is necessary to configure the transmitter project in PDM.

- 1. Add the device to SIMATIC Modbus network:
 - Select "File" > "New".
 Type in a project name, for example FC commissioning.
 - Go to "View" and select "Process Device Network" view.
 - Right-click on the typed in *Project name* and select "Insert New Object" > "Networks".
 - Right-click on "Networks" and "Insert New Object" > "Communication Network".
 - Click on "Assign Device Type" and select "Modbus Network".
 - Click "OK" two times.
 Your PC is now added to the Modbus Network.
 - Right-click on "Modbus Network" and select "Insert New Object" > "Object".
 - Click on "Assign Device Type", and select "Devices" > "Modbus" > "Sensors" > "Flow" > "Coriolis" > "SIEMENS AG" > "SITRANS FC".

- Click "OK" two times.

Insert Object - MODBUS net	vork			<u></u>
Object name:			Assign Device T	Гуре
MODBUS address:		1 🤌		
Count:		1		
Catalog path:				

Figure 6-1 Assigning Modbus device to network

- 2. Set up the communication parameters for SIMATIC Modbus network:
 - Select "Networks" > "My computer", right-click on "COM Port Interface" and select "Object Properties".

- Select the "Communication" tab and configure the communication parameters. The transmitters default settings are:
 - Transmission rate: 19200 baud
 - Parity: even

Edit Insert Wind	ow View Options Help
) X 🖻 💼 4	💁 🔚 🏥 💼 🔹 < No Filter > 💽 🏹 🖷 🚍 🛅 💦
C (Process Device N	etwork View) C:\Program Files (x86)\Siemens\STEP7\S7Proj
FC - ♣ Networks - ₽ My comput - ♣ MODBUS r	
perties - COM Port-	Schnittstelle
perties - COM Port-	
perties - COM Port- General Communica	
General Communica	
General Communica	ation
General Communica Assigned network:	MODBUS network
General Communica Assigned network: Properties	MODBUS network
General Communica Assigned network:	MODBUS network
General Communica Assigned network: Properties	ation MODBUS network Assign a network to interface: 'COM Port-Schnittstelle'

Figure 6-2 Set the COM Port

- Click "OK".
- 3. Set up the COM interface:
 - Select "Modbus Networks".
 - Right-click on the object name "SITRANS FC" and select "Object Properties".

- Select the "Communication" tab and configure the Modbus address.

SIMATIC PDM stand alone - FC
File Edit Insert Window View Options Help
📄 🗅 🥔 🐇 🛍 💼 🕒 📴 🧱 🏢 🛍 📉 🔍 No Filter > 🔄 🏹 🖷 🚍 🗂 🕅
FC (Process Device Network View) C:\Program Files (x86)\Siemens\STEP7\S7Proj
Image: PC Image: Site of the second secon
Properties - SITRANS FC General Device Diagnostics Communication Document Manager
MODBUS address:
Redundancy
Redundancy activated
Corresponding slave:

Figure 6-3 Set Modbus address

– Click "OK".

6.3.5 Configuring a new device

Note

Configuring device via SIMATIC PDM

- Clicking "Cancel" button during an upload from device to SIMATIC PDM will result in *some* parameters being updated.
- 1. Check that you have the most recent EDD, and if necessary update it. See Updating the Electronic Device Description (EDD) (Page 70).
- 2. Launch **SIMATIC Manager** and create a new project for the device.
- 3. Open the menu "Device > Operation > Reset > Restore ordered configuration". Select "Yes" button and click "OK" to perform a reset to customer ordered settings.
- 4. After the reset is complete click on "Upload to PG/PC..." to upload the parameters.
- 5. Configure the device via the quick start wizard. (See Wizard Quick Start via PDM (Page 57).)

6.3.6 Wizard - Quick Start via PDM

The Quick Start wizard provides an easy 5-step procedure that configures the device for a simple application.

Please consult the SIMATIC PDM operating instructions or online help for details on using SIMATIC PDM.

Access level control

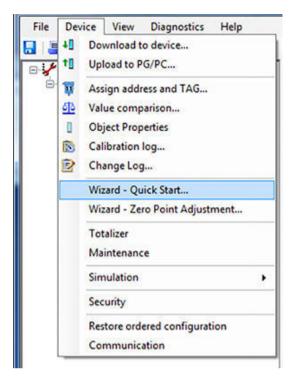
The parameters are protected against changes by access level control. To gain access follow this procedure:

- 1. Go to menu "Device" > "Security".
- 2. Select "User" and enter the PIN code. The default user PIN code is 2457.

Quick Start

Note

- The "Quick Start" wizard settings are inter-related and changes apply only after you click on "Apply and Transfer" at the end of step 5 to save settings offline and transfer them to the device.


- Do not use the "Quick Start" wizard to modify individual parameters.

- Click on "Back" to return and revise settings or "Cancel" to exit the "Quick Start".

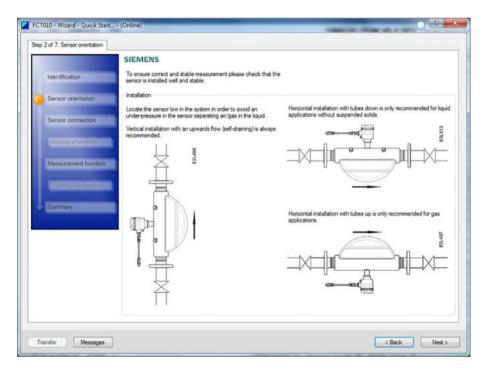
Launch SIMATIC PDM, open the menu "Device" > "Wizard - Quick Start...", and follow steps 1 to 5.

Commissioning

6.3 Remote commissioning with PDM FCT010

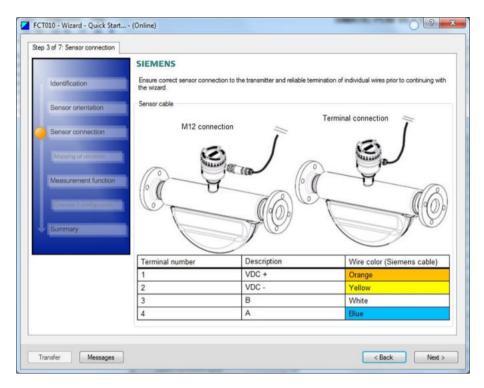
Step 1 - Identification

Note


The layout of the dialog boxes shown may vary according to the resolution setting for your computer monitor. The recommended resolution is 1280 x 960.

- 1. Click on "Read Data from Device" to upload Quick Start parameter settings from the device to the PC/PG and ensure SIMATIC PDM is synchronized with the device.
- 2. Click on "Next" to accept the default values.

Identification	SIEMENS	These parameters are used to identify the device. The TAG should b	xe	
		unique in your application.	10111	
Sensor orientation	Long tag:	FCT010	1	
Sensor connection	Descriptor:	SITRANS FCT010	1	le.
Mapping of constant	Installation date:	2018-07-30	11	
Measurement function	Product order number:		1	6
	Sensor Product name:	SITRANS FCT010	11	P.C.
Summary	Size		11	
	-			


Step 2 - Sensor orientation

Step 2 shows an overview of the various recommended installation orientations depending on the application.

Step 3 - Sensor connection

The transmitter can be ordered with M12 connection or with terminated cable (for example conduit connections).

Step 4 - Measurement function

Configure the measurement conditions for the selected process variables. Change "Flow direction" if necessary.

ep 5 of 7: Measurement function	SIEMENS					
	Basic configurati			Mass flow		
Identification	Flow direction:		- 18	Units:	kg/h 👻	2
Sensor orientation		Select a filter setting to set the sensitivity of the flow measuremer reduce process noise.		Low flow cut-off:	L'ATTACA AND AND AND AND AND AND AND AND AND AN	🤌 kg/h
Sensor connection	Noise damping:	Duplex pump (3)	- 11	Volume flow		
				Units:	m²/h 👻	0
Mapping of variables				Low flow cut-off:		
Measurement function	\land	$\land \land \land \land$		Density		
Countreal 1 configuration				Empty tube detection:	Disabled -	10

Step 5 - Summary

Check parameter settings, and click on

- "Back" to return and revise values or
- "Apply" to save settings offline or
- "Apply and Transfer" to save settings offline and transfer them to the device.

	SIEMENS								
Identification	Please verify the setting	gs before	e writing setup p	aramet	ters into t	he device.			
Sensor orientation	t is strongly recommen	ded to e	xecute the Wiz	and - Ze	ero Point	Adjustment	after Quick Sta	tisfini	shed.
Sensor connection	Identification	Old:		-		New;		_	
Sensor connection	Long tag	FCTO	10			FCT01	0		
Magang of summary	Descriptor	SITRA	ANS FCT010	-		SITRA	NS FCT010		
Allowing of excellent	Installation date	2018-	07-30			2018-0	7-30		
Measurement function	Basic configurati	ons	Old:				New:		
	Flow direction	1	Postive				Positive		
The section of the se	Noise dampin	9	Duplex pump	(3)	1		Duplex pump	(3)	5
Summary	Mass flow	Ok	t.	T		Ne	w:	T	
	Low flow cut-off	0.0		kg/	5	10	0	kg/	h
	Volume flow	Ok		T		Ne	<i>N</i> :	T	
	Low flow cut-off	0.0	1	m3/s	1	10	0	m ² /1	h
	Density		Old		1		New:	_	
	Empty tube detec	tion	Disabled				Disabled		
			1.1	-	S			-	

The message "Quick Start was successful" will appear. Click on "OK".

See also

Configuring a new device (Page 56)

6.3.7 Wizard - Zero Point Adjustment

Note

Preconditions

Before a zero point adjustment is initiated, the pipe must be flushed, filled and at an absolute flowrate of zero preferably also at operating pressure and temperature.

Performing a zero point adjustment

1. Flush out the flowmeter until a homogenous flow is established and the tubes are completely filled.

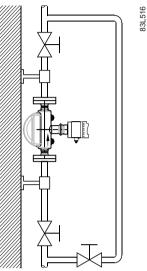


Figure 6-4 Best practice zero point adjustment with a by-pass line and two shut-off devices

- 2. Establish zero flow for example by closing the shut off-valves.
- 3. Wait 1 to 2 minutes for the system to settle, and then perform zero point adjustment as described in the following steps.
- 4. Select "Device" > "Wizard Zero Point Adjustment..." from the main menu of SIMATIC PDM to perform an automatic zero point adjustment.

File	Device	View	Diagnostics	Help
	41 D	ownload t	to device	
	10 U	pload to P	PG/PC	
È	1 A	ssign add	ress and TAG	
	<u>61</u> 2 Va	alue comp	parison	
	0	bject Prop	perties	
	🖹 C	alibration	log	
	🖻 C	hange Log	g	
	W	izard - Qu	uick Start	
	W	izard - Ze	ro Point Adjust	ment
	Te	otalizer		
	M	aintenand	ce	
	Si	mulation		•
	Se	curity		
	Re	estore ord	ered configurat	ion
	C	ommunic	ation	

5. It is recommended to use the default settings ("Auto"). If necessary, change the "Zero Point Adjustment Settings".

	The sensor zero point can be set manually or automatically during the zero point adjustment. It is recommended to perform auto zero point adjustment. Manual zero point adjustment should only be performed in	
and the second	special cases where the zero point offset is already known.	
Zero point adjustment	Auto: A 'zero flow' condition must be ensured in the sensor. The zero point adjustment procedure will run for a pre-configured period of time in order to determine the zero point offset. Finally the quality of the determined zero point offset will be validated.	Manual: It is possible to write the zero point offset to the device without performing the automatic zero point adjustment procedure. This cas be useful if the correct zero point offset for the sensor is already known.
	Method of zero point adjustment: Zero point adjustment	Zero point adjustment Auto: A 'zero flow' condition must be ensured in the sensor. The zero point adjustment procedure will run for a pre-configured period of time in order to determine the zero point offset. Finally the quality of the determined

- 6. Click on "Next".
- 7. Click on "Perform".

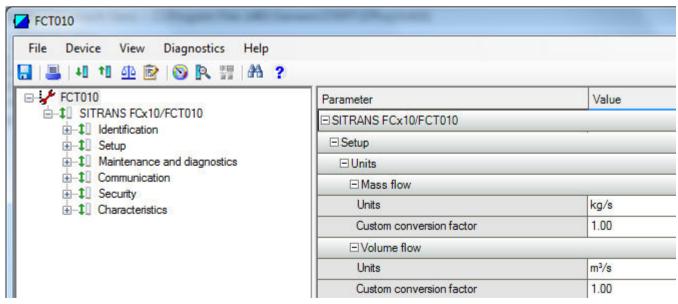
	SIEMENS				
Setting Adjustment	1.He 2.Pu 3.Sto 4.Wa 5.Ad Wh	nsure a correct zero point adjustment, please use the following at up the sensor to process temperature for at least 30 minutes plaud at mark flow for at least 20 minutes and ensure that no- o the flow by situating off the outlet valve B and then the inlet it if or at least 1 minute wate the automatic zero point adjustment in the cound/som has finahed the actual zero point is diaplaye transmitter is now ready for flow measurement.	air is present valve A		
]₽₹₽₽₽₩				
	Zero point adjustment settings				
	Duration:		18 5		
	Brook of Accession have	1023.1	1] kg/s	Standard deviation:	22.2583 1 kg/s
	Standard deviation limit:		1 kg/s		3.98538 1 kg/s

- 8. During the process a progress bar is visible.
- 9. At the end of the zero point adjustment the outcome is displayed as an offset and a standard deviation.

Note

If you get an error message after the zero point adjustment, refer to Fault codes and corrective actions (Page 96).

The system is now ready for normal operation.


6.3.8 Changing parameter settings using SIMATIC PDM

Note

Clicking on "Cancel" during an upload from device to SIMATIC PDM will result in some parameters NOT being updated.

Many parameters are accessed via the online menus in SIMATIC PDM, see Parameters accessed via drop-down menus (Page 66) for the others.

- 1. Launch SIMATIC PDM, connect to the appropriate device and upload data.
- 2. Adjust parameter values in the parameter value field.
- 3. Click on "Enter". The status fields read "Changed".
- 4. Open the menu "Device".
- 5. Click on "Download to device".
- 6. In menu "File" click "Save" to save settings offline. The status fields are cleared.

6.3.9 Parameters accessed via drop-down menus

Click on menu "Device" or "View" to open the associated drop-down menus.

File	Devi	ice	View	Diagnostics	Help	
	40	Do	wnload t	o device		
	t[]	Upl	oad to P	G/PC		
ė	π	Ass	ign addr	ess and TAG		
	<u>61</u> 2	Value comparison				
	0	Object Properties				
		Cal	ibration	log		
		Change Log				
		Wiz	ard - Qu	iick Start		
		Wiz	ard - Ze	ro Point Adjust	ment	
		Tot	alizer			
		Ma	intenanc	:e		
		Sim	nulation		•	
		Sec	urity			
		Res	tore ord	ered configurat	tion	
		Co	mmunic	ation		

Drop-down menus

Table 6-1 Menu "Device"

Option	Description
Download to device	Download all writable parameters to the device.
Upload to PC/PG	Upload all parameters from the device to the parameter
	table.
Assign address and TAG	Assign communication address and TAG name.
Value comparison	Compare values between device / project.
Object Properties	Show Properties for device and project.
Calibration log	Create calibration logs for field devices.
Change Log	The change log records which actions have been per- formed with SIMATIC PDM on devices.
Wizard - Quick Start	Start guide for quick commissioning of the device.
Wizard - Zero Point Adjustment	Start guide for zero point adjustment (automatic and man- ual).
Totalizer	Show or change totalizer settings.
Maintenance	Show maintenance parameters.

Option	Description
Simulation	Start simulation for testing purposes.
Security	Select or change access level.
Restore ordered configuration	Set all parameters to customer ordered settings.
Communication	Show communication settings.

Table 6-2 Menu "View"

Option	Description
Process values (online dialog)	Show all process values.
Device Diagnostic (online dialog)	Show all diagnostics information (alarms and diagnostics parameters).
Toolbar (online dialog)	Show or hide the toolbar.
Status Bar	Show or hide the status bar.
Update	Update the content of the active window.

6.3.10 Process values

- 1. To compare outputs in real time select "View" > "Process values" to see all process values, totalizers and loop current.
- 2. Verify that the process values show the expected values.

Figure 6-5 Process variables

Trend view

Open the menu "View" > "Process values" and click on one of the "Trend view" buttons to monitor the trend of one or all process values available at each tab.

Operating FCT010

7.1 Remote operation

For information on Modbus addresses, registers and function codes see appendix Modbus communication FCT010 (Page 151).

7.1.1 Overview of device configuration software

There are currently two competing technologies for configuring field devices:

- Electronic Device Description Language (EDDL)-based software
- Field Device Tool / Device Type Manager (FDT/DTM)-based software

From a practical point of view, both EDDL and FDT/DTM solutions do the same thing: provide a way of reading and writing configuration parameters to field devices and viewing advanced diagnostics.

Note

- SIMATIC PDM (an EDDL-based software) configures a field device using the Electronic Device Description (EDD) for that device.
- PACTware and Fieldcare (FDT-based software) use the DTM for that field device.

In addition, there is a new standard called Field Device Integration (FDI) which is a merger of these two technologies. Many of the major vendors have stated that their configuration software will evolve into being an FDI host. At the time this manual was written, Siemens had announced that SIMATIC PDM will become a FDI host system in the near future.

7.1.2 SIMATIC PDM

7.1.2.1 Overview SIMATIC PDM

SIMATIC PDM (Process Device Manager) is a general-purpose, manufacturer-independent tool for the configuration, parameter assignment, commissioning, diagnostics and maintenance of intelligent field devices and field components. Follow-up installations and additional information on SIMATIC PDM are available on the Internet at SIMATIC PDM (<u>www.siemens.com/simatic-pdm</u>).

SIMATIC PDM monitors the process values, alarms and status signals of the device. It allows you to display, compare, adjust, verify, and simulate process device data; also to set schedules for calibration and maintenance.

For information on, for example, how to install and integrate devices, commission the software, see Operating Manual 'Help for SIMATIC PDM'. The manual is delivered with SIMATIC PDM

7.1 Remote operation

software. Once the SIMATIC PDM is installed on your computer you find the manual under: Start > All programs > Siemens Automation > SIMATIC > Documentation. Link at our website: 'Help for SIMATIC PDM' (<u>https://support.industry.siemens.com/cs/ww/de/view/109482406/en</u>).

Note

Field device parameters

- For a list of parameters and additional information, consult section "Parameter assignment FCT010 (Page 73)".
- The field device remains in measurement mode during the time you configure the field device.

7.1.2.2 Check SIMATIC PDM version

Procedure

- 1. Go to SIMATIC PDM Download (<u>http://www.siemens.com/simaticpdm/downloads</u>).
- 2. Check the support page to make sure you have:
 - The latest version of SIMATIC PDM
 - The most recent Service Pack (SP)
 - The most recent hot fix (HF)

7.1.2.3 Updating the Electronic Device Description (EDD)

Procedure

- 1. Check that the EDD revision match the Firmware revision in the device according to the table in section Product compatibility FCT010 (Page 8).
- 2. Go to the support page Software downloads (<u>http://www.siemens.com/</u> processinstrumentation/downloads).
- 3. Enter the product name in the field "Enter search term...".
- 4. Download the most current EDD of your device.
- 5. Save files to your computer in an easily accessed location.
- Launch SIMATIC PDM Device Integration Manager.
 From the File menu, click "Read device descriptions from compressed source...".
- 7. Browse to the zipped EDD file, select and open it.
- 8. Use the "Integration" function to integrate the EDD into the device catalog. The EDD is now accessible via SIMATIC Manager.

7.1.2.4 Set address

Open in SIMATIC PDM the menu Device – Set Address, enter a value for New Address, and click on Assign Address.

Operating FCT010

7.1 Remote operation

Parameter assignment FCT010

8.1 Functions

8.1.1 Process values

According to standard practice with serial communication the Modbus RTU signal updates primary process values and error status values every 10 ms (100 Hz update rate) synchronous with the DSP update cycle.

Process value parameters

Default units for process values can be changed, default values are:

- Mass flow (MassflowValue) [kg/s]
- Volume flow (VolumeflowValue) [m³/s]
- Density (Density) [kg/m³]
- Medium temperature (MediumTemp) [°C]
- Sensor frame temperature [°C]

Process value	Modbus register	Units
Mass flow	7400	g/s (grams per second)
		g/min (grams per minute)
		• g/h (grams per hour)
		• kg/s (kilograms per second) (default)
		• kg/min (kilograms per minute)
		• kg/h (kilograms per hour)
		• kg/d (kilograms per day)
		• t/min (metric tons per minute)
		• t/h (metric tons per hour)
		• t/d (metric tons per day)
		• ton/min (short tons per minute)
		• ton/h (short tons per hour)
		• ton/d (short tons per day)
		• ton (UK)/h (long tons per hour)
		• ton (UK)/d (long tons per day)
		Ib/s (pounds per second)
		Ib/min (pounds per minute)
		Ib/h (pounds per hour)
		• lb/d (pounds per day)
		• Custom

Process value	Modbus register	Units
Volume flow	7500	I/s (liters per second)
		I/min (liters per minute)
		• I/h (liters per hour)
		• m ³ /s (cubic meters per second) (default)
		• m ³ /min (cubic meters per minute)
		• m³/h (cubic meters per hour)
		• m³/d (cubic meters per day)
		• MI/d (megaliters per day)
		• gal/s (US gallons per second)
		• gal/min (US gallons per minute)
		• gal/h (US gallons per hour)
		• gal/d (US gallons per day)
		• bbl-beer/s (beer barrels per second = 31 US gallons)
		• bbl-beer/min (beer barrels per minute = 31 US gallons)
		• bbl-beer/h (beer barrels per hour = 31 US gallons)·
		• bbl-beer/d (beer barrels per day = 31 US gallons)
		bbl/s (oil barrels per second)
		• bbl/min (oil barrels per minute)
		• bbl/h (oil barrels per hour)
		• bbl/d (oil barrels per day)
		• ft ³ /s (cubic feet per second)
		• ft ³ /min (cubic feet per minute)
		• ft ³ /h (cubic feet per hour)
		• ft ³ /d (cubic feet per day)
		• gal/s (UK gallons per second)
		• gal/min (UK gallons per minute)
		• gal/h (UK gallons per hour)
		• gal/d (UK gallons per day)
		Mgal/d (US megagallons per day)
		• Custom

Process value	Modbus register	Units
Density	7600	 μg/l (micrograms per liter) μg/m³ (micrograms per cubic meter) mg/l (milligrams per liter)
		 g/ml (grams per milliliter) g/cm³ (grams per cubic centimeter) g/l (grams per liter) kg/l (kilograms per liter) kg/m³ (kilograms per cubic meter) (default) lb/in³ (pounds per cubic inch) lb/gal (pounds per US gallon) lb/ft³ (pounds per cubic foot) ton/yd³ (short tons per cubic yard) Custom
Temperature	7700	 °C (degrees Celsius) (default) °F (degrees Fahrenheit) °R (degrees Rankine) K (kelvins)
Mass totalizer		 g (grams) kg (kilograms) t (metric tons) ton (short tons) ton (UK) (long tons) oz (ounces avoirdupois) lb (pounds) Custom

8.1.2 Zero point adjustment

See also the description of the Zero point adjustment via SIMATIC PDM (Page 62).

Note

Preconditions

Before a zero point adjustment is initiated, the pipe must be flushed, filled and at an absolute flowrate of zero preferably also at operating pressure and temperature.

Note

Change of parameters during zero point adjustment

Do not change any other parameter during the zero point adjustment procedure.

Automatic zero point adjustment

The device measures and calculates the correct zero point automatically.

The automatic zero point adjustment of the flowmeter is set by the following parameters:

- Duration (Modbus address 2135)
- Start Zero Point Adjustment (Modbus address 2180)

When zero adjust is initiated by selecting **Start Zero Point Adjustment**, the mass flow values are acquired and totalized for the configured period (Duration). The default zero point adjustment period (30 s.) is normally sufficient for a stable zero point measurement.

Note

Extremely low flow quantity

If the flow quantity is extremely small, extremely precise measurement is necessary. In this case, a long zero point adjustment period can be selected for improved zero point adjustment.

Zero point calculation

During zero point adjustment, an average value is automatically calculated using the following formula:

Zero point offset value		
Average of N flow values	$\overline{x} \equiv \frac{\sum_{i=1}^{N} x_i}{N}$	x _i is an instantaneous flow value sampled in the time domain N = Number of samples during zero point ad- justment

The offset value must be within the determined Zero Point Offset Limit (Modbus address 2140).

Note

Exceeded zero point offset limit

If the offset value is greater than the configured limit, proceed as follows:

- Check that the tube is completely filled and that the flowrate is absolute zero.
- Check the validity of the configured zero point offset limit.
- Repeat the zero point adjustment.

Zero point standard deviation

After completion of the procedure, the standard deviation is calculated in accordance with the following formula:

	Zero point standard deviation	
$s \equiv \sqrt{\frac{i-1}{N-1}}$	Standard deviation of N values	$s \equiv \sqrt{\frac{\sum_{i=1}^{N} (x_i - \overline{x})^2}{N - 1}}$

The standard deviation contains important feedback on the homogeneity of the fluid, for example on the presence of bubbles or particles.

The standard deviation must be within the determined **Standard deviation limit** (Modbus address 2138).

Note

Exceeded standard deviation limit

If the standard deviation is greater than the configured limit, proceed as follows:

- Check that the tube is completely filled and that the flow rate is absolute zero.
- Check that the installation is vibration-free.
- Check the validity of the configure Standard deviation limit (Modbus address 2138).
- Repeat the zero point adjustment.

Successful automatic zero point adjustment

If the new zero point offset value is valid, it is automatically stored as the new zero point for the sensor. It remains stored in the case of a power failure.

Manual zero point adjustment

In case an automatic zero point adjustment cannot be performed, it is possible to do a manual zero point adjustment by entering the zero point offset value.

- Select Modbus address 2132 Zero Point Adjustment and set the value to 1 = Manual Zero Point Adjustment.
- 2. Select Modbus address 2133 Manual Zero Point Offset and enter the desired offset value.

8.1.3 Low flow cut-off

In certain applications, for example dosing applications, no flow signals under a certain flow level are desired. In these applications, the flow signal can be forced to zero when the flow is lower than a predefined flow value (low flow cut-off).

The transmitter provides two parameters for setting the low flow cut-off:

- Mass flow cut-off limit (Modbus address 2125)
- Volume flow cut-off limit (Modbus address 2170)

8.1.4 Empty tube monitoring

The empty tube monitoring function uses the process density for detecting an empty tube. Use of this function is recommended for all standard applications.

Note

Gas applications

Deactivate the empty tube monitoring function.

Empty tube monitoring parameters

Two parameters for setting the empty tube monitoring function are available:

- Empty tube detection (Modbus address 2129)
- Empty tube limit (Modbus address 2127)

The empty tube monitoring is activated via the Empty tube detection parameter. When the empty tube monitoring function is on, the mass flow / volume flow value is forced to zero if the tube is empty.

The tube is defined as empty if the measured density value is lower than the value defined via the Empty tube limit parameter.

Note

Process media density

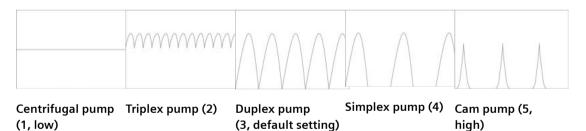
Risk of unintentionally forcing flow values to zero if the difference between the Empty tube limit density value and the density of the process media is not sufficient.

• Ensure sufficient difference between the Empty tube limit density value and the process media density.

8.1.5 Process noise damping

Noise damping function

The dynamic sensitivity of the flow measurement signal to rapid changes in process flows can be reduced by use of the process noise damping function. The function is typically used in environment with:


- Strongly pulsating flow
- Changing pump speeds
- Large pressure variations

Process noise damping settings

Reduce interfering process noise by increasing the setting of the parameter **Process noise** damping (Modbus address 2130).

- Centrifugal pump (1: low)
- Triplex pump (2)
- Duplex pump (3)
- Simplex pump (4)
- Cam pump (5: high)

The default value is **Duplex pump**. The damping affects all functions and outputs of the sensor.

Note

Increased reaction time

The reaction time of the sensor increases when the process noise is damped.

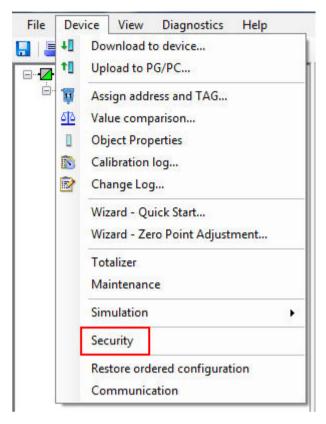
8.1.6 Totalizer

Totalizer function

The device has one totalizer function that can be used to totalize the mass flow process value. Default unit of the totalizer can be changed, see Modbus register 8320.

The totalizer may be paused, resumed or reset:

- Pause (Modbus address 2613): the totalizer holds the last value before the failure occurred
- Resume (Modbus address 2614): the totalizer continues counting the actual measured value
- Reset (Modbus address 2612): the totalizer continues counting based on the last input value (for example mass flow) before the failure occurred.


Note

The totalizer is reset on power failure.

8.1.7 Security

All parameters may be viewed but some are protected against changes by access level control.

The Security menu makes it possible to gain access to PIN code protected parameters and to change PIN codes.

The access levels are:

• Read only

Allows no configuration. The user is only able to read the parameter values. No PIN code is required.

• User

Allows configuration and service of all parameters except calibration parameters. Default PIN code is 2457.

Note

Auto Log Off function

The access level will be set to Read only mode if the device is powered off.

8.1.8 Simulation

Simulation is used for testing purposes, typically for checking that the readings of the control system are correct.

Process value simulation

The following process values can be simulated:

- Mass flow (Modbus address 2764)
- Density (Modbus address 2766)
- Medium temperature (Modbus address 2768)
- Sensor frame temperature (Modbus address 2770)
- Volume flow (Modbus address 2772)

The simulation can be activated through SIMATIC PDM in the menu **Device** \rightarrow **Simulation** \rightarrow **Process Variables**.

8.1.9 Changing Modbus communication settings

Changing communication parameters, for example **Baud Rate**, **Modbus Parity Framing** or **Bus Address** effects the Modbus communication as follows:

- The new settings have effect only after a reset, either by restarting the device or writing the value 1 to Modbus address 600 **Restart communication**.
- The new settings will not have effect until the Modbus driver has responded to any ongoing Modbus request.

NOTICE

Setting addresses in a multidrop network

It is recommended NOT to use the default address in a multi-drop network. When setting device addresses, make sure that each device has a unique address. Replication of addresses may cause abnormal behavior of the entire serial bus and make the master unable to communicate with all slaves on the bus.

8.1.10 Float transmission

The Float Byte Order function ensures that the master and slave use the same sequence of the bytes when transmitting float values. This enables the user to configure the transmitter using the configuration tool, SIMATIC PDM, and operate the device with all types of PLCs without reprogramming the PLC. The transmission order is configured by setting the parameter **Byte Order** in the submenu **Device** \rightarrow **Communication**.

Note

The command **Restart Communication** must be executed to activate the new byte order setting.

This table shows the different options for setting the transmission method:

Selection	Sequence				
	1st	2nd	3rd	4th	
1 - 0 - 3 - 2	Byte 1	Byte 0	Byte 3	Byte 2	
	(MMMMMMM)	(MMMMMMMM)	(SEEEEEE)	(EMMMMMMM)	
0 - 1 - 2 - 3	Byte 0	Byte 1	Byte 2	Byte 3	
	(MMMMMMM)	(MMMMMMM)	(EMMMMMMM)	(SEEEEEEE)	
2 - 3 - 0 - 1	Byte 2	Byte 3	Byte 0	Byte 1	
	(EMMMMMM)	(SEEEEEE)	(MMMMMMM)	(MMMMMMM)	
3 - 2 - 1 - 0 *	Byte 3	Byte 2	Byte 1	Byte 0	
	(SEEEEEE)	(EMMMMMMM)	(MMMMMMM)	(MMMMMMMM)	

* = Factory setting

S = Sign

E = Exponent

M = Mantissa

NOTICE

Change of float byte order

If the float byte order is changed by use of PDM to anything other than default, all float values shown in PDM are wrong.

Service and maintenance

9.1 Basic safety notes

Note

The device is maintenance-free.

The device is maintenance-free. However, a periodic inspection according to pertinent directives and regulations must be carried out.

An inspection can include, for example, check of:

- Ambient conditions
- · Seal integrity of the process connections, cable entries, and cover
- Reliability of power supply, lightning protection, and grounds

🛕 WARNING

Impermissible repair and maintenance of the device

• Repair and maintenance must be carried out by Siemens authorized personnel only.

🛕 WARNING

Impermissible repair of explosion protected devices

Risk of explosion in hazardous areas

• Repair must be carried out by Siemens authorized personnel only.

M WARNING

Dust layers above 5 mm

Risk of explosion in hazardous areas.

Device may overheat due to dust build up.

• Remove dust layers in excess of 5 mm.

9.2 Recalibration

NOTICE

Penetration of moisture into the device

Damage to device.

• Make sure when carrying out cleaning and maintenance work that no moisture penetrates the inside of the device.

Leaks in the sample gas path

Risk of poisoning.

When measuring toxic process media, these can be released or collect in the device if there are leaks in the sample gas path.

- Purge the device as described in Commissioning (Page 49).
- Dispose of the toxic process media displaced by purging in an environmentally friendly manner.

🛕 WARNING

Use of a computer in a hazardous area

If the interface to the computer is used in the hazardous area, there is a risk of explosion.

• Ensure that the atmosphere is explosion-free (hot work permit).

9.2 Recalibration

Siemens offers to recalibrate the sensor.

The following calibration types are offered as standard according to configuration:

- Standard mass flow calibration
- Density calibration
- Customer specified mass flow calibration
- Accredited Siemens ISO/IEC 17025 mass flow calibration

Note

SensorFlash

For sensor recalibration the SensorFlash memory unit must always be returned with the sensor.

9.4 Maintenance and repair work

9.3 Cleaning

Cleaning the enclosure

- Clean the outside of the enclosure with the inscriptions using a cloth moistened with water or a mild detergent.
- Do not use any aggressive cleansing agents or solvents, e.g. acetone. Plastic parts or the painted surface could be damaged. The inscriptions could become unreadable.

9.3.1 Electrostatic charge

Electrostatic charge

Risk of explosion in hazardous areas if electrostatic charges develop, for example, when cleaning plastic surfaces with a dry cloth.

• Prevent electrostatic charging in hazardous areas.

9.4 Maintenance and repair work

🛕 WARNING

Impermissible repair of explosion protected devices

Risk of explosion in hazardous areas

• Repair must be carried out by Siemens authorized personnel only.

🛕 warning

Maintenance during continued operation in a hazardous area

There is a risk of explosion when carrying out repairs and maintenance on the device in a hazardous area.

• Isolate the device from power.

- or -

• Ensure that the atmosphere is explosion-free (hot work permit).

9.4 Maintenance and repair work

🛕 WARNING

Impermissible accessories and spare parts

Risk of explosion in areas subject to explosion hazard.

- Only use original accessories or original spare parts.
- Observe all relevant installation and safety instructions described in the instructions for the device or enclosed with the accessory or spare part.

A WARNING

Humid environment

Risk of electric shock.

- Avoid working on the device when it is energized.
- If working on an energized device is necessary, ensure that the environment is dry.
- Make sure when carrying out cleaning and maintenance work that no moisture penetrates the inside of the device.

🛕 WARNING

Enclosure open

Risk of explosion in hazardous areas as a result of hot components and/or charged capacitors inside the device.

To open the device in a hazardous area:

- 1. Isolate the device from power.
- 2. Visually inspect sensor inlet and outlet.

Exception: Devices exclusively having Intrinsic safety (Ex i) may be opened in an energized state in hazardous areas.

🛕 WARNING

Hot, toxic or corrosive process media

Risk of injury during maintenance work.

When working on the process connection, hot, toxic or corrosive process media could be released.

- As long as the device is under pressure, do not loosen process connections and do not remove any parts that are pressurized.
- Before opening or removing the device ensure that process media cannot be released.

9.4 Maintenance and repair work

🛕 WARNING

Improper connection after maintenance

Risk of explosion in areas subject to explosion hazard.

- Connect the device correctly after maintenance.
- Close the device after maintenance work.

Refer to Power (Page 107).

The device is maintenance-free. However, a periodic inspection according to pertinent directives and regulations must be carried out.

An inspection can include check of:

- Ambient conditions
- · Seal integrity of the process connections, cable entries, and cover screws
- Reliability of power supply, lightning protection, and grounds

NOTICE

Repair and service must be carried out by Siemens authorized personnel only.

Note

Siemens defines flow sensors as non-repairable products.

9.4.1 Maintenance information FCT010

Maintenance information parameters

The basic maintenance information parameters are:

- Current date and time
- Operating time total
- Operating time
- Transmitter Hardware version
- Sensor Hardware version

9.4.2 Service information FCT010

Service information is information about the condition of the device used for diagnostics and service purposes.

Service and maintenance

9.6 Spare parts/Accessories

Service information parameters

The basic service information parameters are:

- Driver Current
- Pickup 1 Amplitude
- Pickup 2 Amplitude
- Sensor Frequency
- Process Media Temperature
- Zero Point Adjustment Auto/Manual
- Zero Point Offset Value
- Manual Zero Point
- Zero Point Standard Deviation

9.5 Replacing the device

ACAUTION

Corrosive substances

Risk of chemical burns when replacing the sensor.

The sensor in the device contains corrosive substances that result in burns on unprotected skin.

- Make sure that the sensor enclosure is not damaged when replacing the sensor.
- If contact with the corrosive substances occurs, rinse the affected skin immediately with large amount of water to dilute substance.

9.6 Spare parts/Accessories

9.6.1 Ordering of spare parts

Ensure that your ordering data is not outdated. The latest ordering data is always available on the Internet: Catalog process instrumentation (<u>http://www.siemens.com/</u><u>processinstrumentation/catalogs</u>)

9.6 Spare parts/Accessories

9.6.2 Ex-approved products

Note

Repair of Ex-approved products

It is the customer's responsibility that repair of Ex-approved products fulfill national requirements.

9.6.3 Replaceable components

This table gives an overview of which components can be replaced.

Component	Order number	Photo	Replacable in Ex devices	Hot swappable ¹⁾
SITRANS FC Bag of loose parts for sensor Contents: Screws, O-rings, cable clamp parts	A5E03549324		Yes Observe hazard- ous area access protocol	No
SITRANS FCT010 Blind lid in painted aluminum small (Ø85 mm)	A5E03549295		Yes Observe hazard- ous area access protocol	Yes Observe hazardous area access proto- col
Sensor housing with cable en- tries in metric tread	A5E03549313		No	Νο
Sensor housing with cable en- tries in NPT tread	A5E03906080		No	Νο
SITRANS FCS400 M12 option for sensor housing	A5E03906095		No	No
Frontend cassette Spare part frontend cassette for FCT010/DSL From firmware 4.0	A5E41526286		No	No

9.8 Return procedure

¹⁾ Components may be replaced while power is on in non-hazardous areas only.

9.7 Transportation and storage

To guarantee sufficient protection during transport and storage, observe the following:

- Keep the original packaging for subsequent transportation.
- Devices/replacement parts should be returned in their original packaging.
- If the original packaging is no longer available, ensure that all shipments are properly packaged to provide sufficient protection during transport. Siemens cannot assume liability for any costs associated with transportation damages.

NOTICE

Insufficient protection during storage

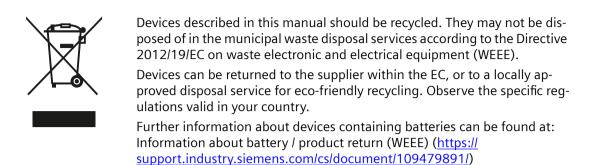
The packaging only provides limited protection against moisture and infiltration.

• Provide additional packaging as necessary.

Special conditions for storage and transportation of the device are listed in Technical data (Page 107).

9.8 Return procedure

Enclose the bill of lading, return document and decontamination certificate in a clear plastic pouch and attach it firmly to the outside of the packaging.


Required forms

- Delivery note
- Return goods delivery note (<u>http://www.siemens.com/processinstrumentation/</u> <u>returngoodsnote</u>) with the following information:
 - Product (item description)
 - Number of returned devices/replacement parts
 - Reason for returning the item(s)
- Decontamination declaration (<u>http://www.siemens.com/sc/declarationofdecontamination</u>) With this declaration you warrant "that the device/replacement part has been carefully cleaned and is free of residues. The device/replacement part does not pose a hazard for humans and the environment."

If the returned device/replacement part has come into contact with poisonous, corrosive, flammable or water-contaminating substances, you must thoroughly clean and decontaminate the device/replacement part before returning it in order to ensure that all hollow areas are free from hazardous substances. Check the item after it has been cleaned. Any devices/replacement parts returned without a decontamination declaration will be cleaned at your expense before further processing.

9.9 Disposal

9.9 Disposal

Note

Special disposal required

The device includes components that require special disposal.

• Dispose of the device properly and environmentally through a local waste disposal contractor.

9.9 Disposal

Diagnostics and troubleshooting FCT010

10.1 Device status symbols

Device status symbols

SIMATIC PDM/PLC				
Sym- bol	Device status	Priority		
_	Maintenance alarm	1		
Cause: (Output signal invalid due to fault in the field dev	ice or in the peripherals.		
Action:	Maintenance is required immediately.			
2	Manual operation	4		
Cause: (Dutput signal temporarily invalid (e.g. frozen) du	e to work being performed on the device.		
Action:	Disable manual mode via HMI or engineering sy	stem.		
!	Process value alarm	8		
monitori from the	Deviations from permissible ambient or process of ng, or warnings / faults in the device) indicate that set value in the actuators is most likely greater Process or ambient conditions will damage the o	It the measured value is unreliable or deviations than anticipated under normal operating con-		
Action:	Check ambient temperature or process condition	s. If possible, install device at different location.		
•	Process value warning	10		
Cause: Deviations from permissible ambient or process conditions detected by the device (through self- monitoring, or warnings / faults in the device) indicate that the measured value is unreliable or deviations from the set value in the actuators is most likely greater than anticipated under normal operating con- ditions. Process or ambient conditions can damage the device or result in unreliable output. Action: Check ambient temperature or process conditions. If possible, install device at different location.				

10.2 Fault codes and corrective actions

10.2 Fault codes and corrective actions

10.2.1 Diagnostics

lcons	Message	Cause/Action
	Sensor supply volt. out of range	Contact your local Siemens representative.
	Sensor supply volt. out of range	Contact your local Siemens representative.
,	Temperature measure- ment fault	Turn off the power, wait 5 seconds and turn on the power again. If the problem persists, contact your local Siemens representative.
	Temperature measure- ment fault	Turn off the power, wait 5 seconds and turn on the power again. If the problem persists, contact your local Siemens representative.
	Temperature measure- ment fault	Turn off the power, wait 5 seconds and turn on the power again. If the problem persists, contact your local Siemens representative.
	Temperature measure- ment fault	Turn off the power, wait 5 seconds and turn on the power again. If the problem persists, contact your local Siemens representative.
: ‡	Flow values not valid	Can be due to problems with measured fluid or hardware malfunction. If the problem persists, contact your local Siemens representative.
! ‡	Flow values not valid	Can be due to problems with measured fluid or hardware malfunction. If the problem persists, contact your local Siemens representative.
: ‡	Flow values not valid	Can be due to problems with measured fluid or hardware malfunction. If the problem persists, contact your local Siemens representative.
: ‡	Flow values not valid	Can be due to problems with measured fluid or hardware malfunction. If the problem persists, contact your local Siemens representative.
	Invalid calibration data	Contact your local Siemens representative for recalibration.
	Invalid compensation data	Contact your local Siemens representative.
	Malfunction in Pickup Am- plitude	Contact your local Siemens representative.
	Malfunction in Pickup Am- plitude	Contact your local Siemens representative.
	Malfunction in sensor driv- er	Contact your local Siemens representative.
	Malfunction in sensor driv- er	Contact your local Siemens representative.
		Sensor supply volt. out of rangeSensor supply volt. out of rangeSensor supply volt. out of rangeFemperature measure- ment faultFemperature measure- ment faultFemperature measure- ment faultFemperature measure- ment faultFemperature measure- ment faultFelow values not validFelow values not validFelow values not validFelow values not validFelow values not validMalfunction in Pickup Am- plitudeMalfunction in sensor driv- erMalfunction in sensor driv- er

10.2 Fault codes and corrective actions

ID	lcons	Message	Cause/Action
57		Malfunction in sensor driv- er	Contact your local Siemens representative.
58		Unstable driver oscillation	Contact your local Siemens representative.
59	:	Mass flow out of specifica- tion	Reduce the flow. If the problem persists, contact your local Siemens representative.
60	:	Volume flow out of speci- fication	Reduce the flow. If the problem persists, contact your local Siemens representative.
61	:	Density out of specifica- tion	Contact your local Siemens representative.
62	:	Fluid temp. below limit	Increase the fluid temperature. If the problem persists, con- tact your local Siemens representative.
63	:	Fluid temp. above limit	Reduce the fluid temperature. If the problem persists, con- tact your local Siemens representative.
64	: ‡	Frame temp. below limit	Increase fluid temperature and check that ambient temper- ature is within specified limits. If the problem persists, con- tact your local Siemens representative.
65	! ‡	Frame temp. above limit	Reduce fluid temperature and check that ambient temper- ature is within specified limits. If the problem persists, con- tact your local Siemens representative.
66	:	Standard Deviation above limit	Measurement continues with values from last successful zero point adjustment. Improve conditions for automatic zero point adjustment and repeat adjustment.
67	:	Zero Point Offset above limit	Measurement continues with values from last successful zero point adjustment. Improve conditions for automatic zero point adjustment and repeat adjustment.
68	:	Zero point adjustment failed	Measurement continues with values from last successful zero point adjustment. Improve conditions for automatic zero point adjustment and repeat adjustment.
69	!	Empty Tube Limit' excee- ded	Make sure that the sensor is filled with liquid and that the liquid density is within the specified 'Empty Tube Limit'.
70	:	Too little fluid in tube	Make sure that the sensor is filled with liquid.
71		Parameter storage mal- function	Turn off the power, wait 5 seconds and turn on the power again. If the problem persists, contact your local Siemens representative.
72		Internal error in sensor	Contact your local Siemens representative.
73	}	Internal error in sensor	Contact your local Siemens representative.
74	·	Internal error in sensor	Contact your local Siemens representative.
75	.	Internal error in sensor	Contact your local Siemens representative
76		Internal error in sensor	Contact your local Siemens representative.

10.2 Fault codes and corrective actions

ID	lcons	Message	Cause/Action
77		Internal error in sensor	Contact your local Siemens representative.
78	•	Unstable measurement condition	Check if air is present in the liquid and that the flowmeter is operated within its specifications.
79	•	Auto filtering	Check that the flowmeter is operated within its specifica- tions. Check other alarms to rule out HW malfunction.
87	2	Sensor startup	Unplug and reconnect the sensor cable. If the diagnostic persists after the specified startup time, restart the device. If the problem persists, contact Technical Support.

10.2.2 Alarm messages

In the following tables the bits for alarm group 1 and alarm group 2 can be found along with possible causes and directions for corrective action.

Bit	Diagnostic	Action
4 5	Sensor supply volt. out of range	Contact Siemens customer support
6 7 8 9	Temperature measurement fault	Contact Siemens customer support
10 11 12 13	Flow values not valid	Can be due to problems with measured fluid or hardware malfunction. If the failure continues then contact Siemens customer support
14	Invalid calibration data	Contact Siemens customer support for recalibration
15	Invalid compensation data	Contact Siemens customer support
17 18	Malfunction in Pickup Amplitude	Contact Siemens customer support
23 24 25	Malfunction in sensor driver	Contact Siemens customer support
26	Unstable driver oscillation	Contact Siemens customer support
27	Massflow out of specification	Reduce the flow. If the failure continues then contact Siemens customer support
28	Volumeflow out of specification	Reduce the flow. If the failure continues then contact Siemens customer support
29	Density out of specification	Contact Siemens customer support
30	Fluid temp. below limit	Increase the fluid temperature. If the failure continues then contact Siemens customer support
31	Fluid temp. above limit	Reduce the fluid temperature. If the failure continues then contact Siemens customer support

Alarm group 1 (Modbus address 3012)

Bit	Diagnostic	Action
0	Frame temp. below limit	Increase fluid temperature and check that ambient temperature is within speci- fied limits. If the failure continues then contact Siemens customer support
1	Frame temp. above limit	Reduce fluid temperature and check that ambient temperature is within speci- fied limits. If the failure continues then contact Siemens customer support
2	Standard Deviation above limit	Measurement continues with values from last successful zero point adjust- ment. Improve conditions for automatic zero point adjustment and repeat ad-
	(shown for only 2 seconds)	justment.
3	Zero Point Offset above limit (shown for only 2 seconds)	Measurement continues with values from last successful zero point adjust- ment. Improve conditions for automatic zero point adjustment and repeat ad- justment.
4	Zero point adjustment failed (shown for only 2 seconds)	Measurement continues with values from last successful zero point adjust- ment. Improve conditions for automatic zero point adjustment and repeat ad- justment.
5	Empty Tube Limit exceeded	Make sure that the sensor is filled with liquid and that the liquid density is within the specified Empty Tube Limit
6	The sensor is partially filled	Make sure that the sensor is filled with liquid
7	Parameter storage malfunction	Turn off the power, wait 5 seconds and turn on the power again. If the failure continues then contact Siemens customer support
8 9 10 11 12 13	Internal error in sensor	Contact Siemens customer support
14	Unstable measurement condition	Check if air is present in the liquid and that the flowmeter is operated within its specifications
15	Auto filtering	Check that the flowmeter is operated within its specifications. Check other alarms to rule out HW malfunction
23	The sensor is stabilizing	Turn off the power, wait 5 seconds and turn on the power again. If the failure continues then contact Siemens customer support.

Alarm group 2 (Modbus adddress 3014)

10.3 Operation troubleshooting

10.3.1 Updating the firmware

Note

Firmware update

FW update is to be done only by authorized and trained service personnel.

- 1. Contact Technical Support (<u>https://support.industry.siemens.com/cs/my/src?lc=en-WW</u>) to receive the latest available firmware bundle.
- 2. Install the SITRANS FC410 service tool (<u>https://support.industry.siemens.com/cs/ww/en/view/95197152</u>). Use this tool to download the firmware to the transmitter.
- 3. Click "Scan network" to connect to your device via the Service tool:

work scan set	qu				Ne	twork scan re	sults			
OM Port	÷ 8					MODBUS address	Baud rate	Parity	Stopbits	Status
						Responding				
ries	÷ 0					1	19200	Even	1	Success
neout	🗧 1000 ms									
we address range	1	•	to 1	•						
i rate range	19200	•	to 19200	•						
arity/Stopbit range	Even, 1 stop	•	to Even, 1 stop	•						
	Scan netwo			- I			0		ted device	

4. Select your device in the "Network scan results" list.

levice Info	FW file	
Current FW version 4.00.00-15	New FW file	
Current HW version AA/005	File status	
Refresh	Load FW file Start FW update	
W update progress		

- 6. Go to the tab "FW update".
- 7. Click "Load FW file".
- 8. Select firmware bundle.
- 9. Click "Start FW update".

10.3.2 Troubleshooting sensor-related problems

Incorrect and unstable measurements, especially at low flows, are typically a result of an unstable zero point due to:

- Incorrect installation
- Bubbles in the liquid
- Vibrations or cross talk
- Solid particles settling in the liquid

Follow the 4-step guide to troubleshooting:

- Step 1 Preliminary application inspection (Page 102)
- Step 2 Zero point adjustment (Page 102)

- Step 3 Measurement error calculation (Page 102)
- Step 4 Application improvement (Page 103)

The guide enables you to trace the reason for incorrect measurements and to improve the application.

10.3.2.1 Step 1: Inspecting the application

Ensure that:

- 1. The sensor is installed as described in Installing/mounting (Page 27).
- 2. The sensor is located in a vibration-free position. Vibrations can disturb the sensor and therefore cause measurement error.

Depending on application, you should furthermore ensure the following:

• Liquid application

Ensure that the sensor is filled with liquid and liquid only.

Air or gas bubbles in the liquid cause instability and can result in measurement errors. Flush the pipe systems and the sensor for several minutes at maximum flowrate to remove any air bubbles which may be present.

Note

The liquid must be homogeneous in order to measure with high accuracy. If the liquid contains solid particles of greater density than the liquid, then these solids can settle, especially at low flow rates, which will cause instability in the sensor and lead to measurement errors.

For pastes or process fluids with suspended solids always orient the sensor vertically with flow in upward direction to maintain solids suspension.

• Gas application

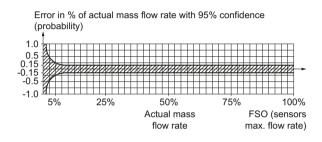
Ensure that the gas pressure/temperature conditions contain sufficient superheat to prevent dewing or precipitation. If the gas contains vapor or droplets then these may precipitate, causing instability.

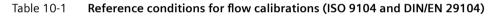
10.3.2.2 Step 2: Performing a zero point adjustment

The second step in the troubleshooting procedure is to zero point adjust the device. For further information on zero point adjustment, see Commissioning (Page 49).

10.3.2.3 Step 3: Calculating the measurement error

The result of the zero point adjustment will show you if the zero point was set under good and stable conditions.


The lower the obtained value of the parameter **Zero Point Standard Deviation**, the lower is the achievable measuring error. For a well-installed flowmeter, the Zero Point Standard Deviation corresponds to the specified zero point stability for the sensor size, see Performance (Page 107).


The parameter **Zero Point Standard Deviation** is located in the **Maintenance & Diagnostics** menu in the SIMATIC PDM.

• The error curve is plotted from the formula:

$$\mathsf{E} = \pm \sqrt{(\mathsf{Cal})^2 + \left(\frac{\mathsf{z} \times 100}{\mathsf{qm}}\right)^2}$$

- E = Error [%]
- Z = Zero point [kg/h]
- qm = Mass flow [kg/h]
- Cal. = Calibrated flow accuracy: 0.10

Flow conditions	Fully developed flow profile
Temperature, medium	20 °C ± 2 °C (68 °F ± 3.6 °F)
Temperature, ambient	20 °C ± 2 °C (68 °F ± 3.6 °F)
Liquid pressure	2 ± 1 bar
Density	0.997 g/cm3
Supply voltage	Un ± 1 %
Warming-up time	30 min.
Cable length	5 m between transmitter and sensor

10.3.2.4 Step 4: Improving the application

In the following it is described how to find the causes of a high Zero point standard deviation and how to improve the installation.

Setting Low flow cut-off

In order to see if the zero point becomes more stable when making changes / adjustments, the Low Mass flow cut-off (MassFlowCutOff) must be set to 0.0 kg/s.

When Low flow cut-off has been set, it is possible to see the instability directly from the mass flow in the online window ("View \rightarrow Process variables")

This information can be used to troubleshoot. For example, tightening the brackets which hold the sensor, or turning off the pump to check if vibrations from the pump are disturbing the sensor, etc.

Incorrect installation of the sensor

• Has the sensor been correctly installed, that is fastened to the floor / wall or frame with good mounting brackets as shown in the instructions?

Especially for low flowrates, that is flowrates less than 10% of the maximum capacity of the flowmeter, it is important that the sensor is correctly and stably installed.

If the sensor is not correctly fixed in place, the zero point of the sensor will change, leading to measuring errors.

Try to tighten up the sensor brackets to see whether the flow instability is reduced.

Vibrations and cross talk

Vibrations in the pipe system are normally generated by pumps.

Typically, cross talk is generated by two sensors of identical size and positioned in close proximity in the same pipe, or installed on the same rail or frame.

Vibrations / cross talk have a greater or lesser effect upon the zero point stability and therefore also the measurement accuracy.

1. Check whether there are vibrations.

Turn off the pump and check whether the zero point stability improves, that is if the flowrate fluctuation in kg/h is reduced.

If the sensor is disturbed by vibration from the pump or by pressure pulsations, the installation should be improved or the pump should be exchanged, for example to another type.

2. Check for cross talk.

Turn off the power to the other flowmeter(s) and wait approximately 2 minutes, so the vibrating tubes in the sensor have stopped vibrating. Then check if the zero point stability has improved, that is that the fluctuation in kg/h has been reduced. If this is the case, the sensors disturb one another and the installation should be improved.

Air in the liquid

When air is present in the liquid, the zero point becomes unstable, which leads to a poor measurement accuracy.

Checking for air:

- Check the Driver current (View \rightarrow Device diagnostics \rightarrow Advanced diagnostic)
- Check if the Driver current varies more than ±1 mA. If this is the case, it is usually due to the presence of air or gas bubbles in the liquid.
- Increase the pressure in the sensor, creating a large back pressure upon the sensor by reducing the opening of the outlet valve or by increasing the pump pressure. Thereby the size of air bubbles inside the sensor will be minimized. If the Driver Current value increases and/ or the stability of the Driver current decreases, it is proof that the liquid contains air or gas bubbles.

10.4 Diagnosing with PDM

Typical causes of air in the liquid

- The entry pipe and sensor have not been properly filled with liquid.
- The pump cavitates, the rotary speed of the pump is too high in relation to the supply of liquid to the pump.
- The flow rate in the pipe is too high, so components sitting in front of the flowmeter can cause cavitation.
- If there is a filter installed before the flowmeter, it may be close to blocking, which also can cause cavitation.
- Liquid flashes to vapor bubbles while passing through partially open valves or orifices.
- The piping on the pump suction side, pump gaskets or the pump itself is not tight. Air gets sucked into the system due to a low pressure on the pump suction side.
- The piping on the pump suction side, pump gaskets or the pump itself is not tight. Air gets sucked into the system due to a low pressure on the pump suction side.

Solid particles in the liquid

If the solid particles in a liquid have a density higher than that of the liquid, they can precipitate inside the sensor and cause instability which leads to a measurement error.

If solid particles are present in the liquid, they must be homogeneously distributed and have similar density as the liquid. Otherwise they can cause relatively large measurement errors.

It is important that the sensor is installed so that solid particles can easily run out of the sensor.

- 1. Ensure that the sensor is installed vertically with an upwards flow.
- 2. Check if solid particles are present in the liquid: Take a sample of the liquid, fill a glass and see if the solids precipitate.

10.4 Diagnosing with PDM

SIMATIC PDM is a suitable tool for diagnosing the device.

You can use SIMATIC PDM to read all available parameters to a table for analyzing offline, view online/actual process values and online/actual diagnostic information.

Requirements

The following procedure must be completed before diagnosing:

- Installation of PDM and PDM device driver
- Connection of communications or digital communications interface

Refer to Remote commissioning with PDM FCT010 (Page 50).

10.4 Diagnosing with PDM

Technical data

Note

Device specifications

Siemens makes every attempt to ensure the accuracy of these specifications but reserves the right to change them at any time.

11.1 Power

Description	Specification	
Supply voltage [V]	12 - 27 VDC Um: 60 VDC	
for Ex d, t	12 - 24 VDC	
Reverse polarity protection	Yes	
Power consumption	1.1 W	

Specification in case of Intrinsic safety power supply: Ui: 20 V, Ii: 484 mA, Pi: 2.3 W, Li: 0.6 uH, Ci: 1.9 nF.

11.2 Performance

Table 11-2 Reference conditions

Description	Specification
Process media	Water
Process media temperature	20 °C (68 °F)
Ambient temperature	25 °C (77 °F)
Process media pressure	2 bar (29 psi)
Process media density	0.997 g/cm ³ (62.2 lb/ft ³)
Reference device orientation	Horizontal installation, tubes down, flow in direc- tion of arrow on casing, see Installing/mounting (Page 27).

11.2 Performance

Sensor size	DI 1.0	DI 1.5	DI 2.1	DI 3	DN4 HP	DN4 C22	DN4 316	DI 6	DI 15
Qmin - minimum flowrate [kg/h] (lb/min)	On request	0.1 (0.22)	On request	1 (2.2)	On request	1 (2.2)	1 (2.2)	5 (11.0)	20 (44.1)
Qnom - nominal flowrate [kg/h] (lb/min)	9,8 (21.6)	19.5 (43)	42 (92.6)	90 (198.4)	35 (77.2)	95 (209.4)	140 (308.6)	500 (1102)	3800 (8378)
Qmax - maximum flowrate [kg/h] (lb/ min)	15 (33)	30 (66)	50 (110)	250 (550)	40 (88)	255 (562)	350 (770)	1000 (2200)	5600 (12350)
Max. zero point sta- bility [kg/h]	On request	0.001 (0.002)	0.001 (0.002)	0.01 (0.02)	On request	0.01 (0.02)	0.01 (0.02)	0.05 (0.11)	0.2 (0,4)
Measuring accuracy [%]	0.3%	0.1%	0.1%	0.1%	0.3%	0.1%	0.1%	0.1%	0.1%
Repeatability error [%]	0.05%	0.05%	0.05%	0.05%	0.05%	0.05%	0.05%	0.05%	0.05%

Table 11-4Density accuracy (liquids)

Sensor size	DI 1.0	DI 1.5	DI 2.1	DI 3	DN4 HP (DI 2.0)	DN4 C22 (DI 3.0)	DN4 316 (DI 3.5)	DI 6	DI 15
Density accuracy, standard calibration [g/cm ³]	n/a	0.005	0.005	0.005	n/a	0.0025	0.007	0.005	0.005
Density accuracy, ex- tended calibration [g/cm ³]	n/a	0.001	0.001	0.0015	n/a	0.0025	0.007	0.0015	0.0005
Density repeatability [g/cm³]	n/a	0.0002	0.0002	0.0002	n/a	0.0002	0.0002	0.0002	0.0001

Table 11-5Media temperature accuracy

Sensor size	DI 1.0	DI 1.5	DI 2.1	DI 3	DN4 HP (DI 2.0)	DN4 C22 (DI 3.0)	DN4 316 (DI 3.5)	DI 6	DI 15
Media temperature accuracy [°C]	±0.5	±0.5	±0.5	±0.5	±0.5	±0.5	±0.5	±0.5	±0.5
Media temperature repeatability [°C]	±0.25	±0.25	±0.25	±0.25	±0.25	±0.25	±0.25	±0.25	±0.25
Brix error [°Brix]	n/a	0.2	0.2	0.3	n/a	0.3	0.3	0.3	0.1

11.2 Performance

Sensor size	DI 1.0	DI 1.5	DI 2.1	DI 3	DN4 HP (DI 2.0)	DN4 C22 (DI 3.0)	DN4 316 (DI 3.5)	DI 6	DI 15
Effect of ambient temperature [% / K actual flow- rate]	< ±0.003	< ±0.003	< ±0.003	< ±0.003	< ±0.003	< ±0.003	< ±0.003	< ±0.003	< ±0.003
Current:	< ±0.005	< ±0.005	< ±0.005	< ±0.005	< ±0.005	< ±0.005	< ±0.005	< ±0.005	< ±0.005
Effect of power sup- ply fluctuations	None	None	None	<0.005%	None	None	None	<0.005%	<0.005%
[% of measuring val- ue on 1% alteration from Un]									

 Table 11-6
 Additional error by deviations from reference conditions

Table 11-7Process media conditions

Sensor size	DI 1.0	DI 1.5	DI 2.1	DI 3	DN4 HP (DI 2.0)	DN4 C22 (DI 3.0)	DN4 316 (DI 3.5)	DI 6	DI 15
Process media tem- perature (T _s) (min to max) • Standard [°C (°F)]	-50 °C to + °F)	125°C (-58	°F to + 257	-50 °C to + 180 °C (-58 °F to + 356 °F)	-40 °C to + 115 °C (-40 °F to + 239 °F)	-40 °C to + (-40 °F to -		-50 °C to + (-58 °F to ·	
 High-tempera- ture version [°C (°F)] 	n/a	-50 °C to + 180 °C (-58 °F to + 356 °F)	n/a			-40 °C to + (-40 °F to -			
Process media densi- ty (min to max) [g/ cm ³ (lb/inch ³]	n/a	0 2.9 g/ inch3)	cm3 (0 0	.105 lb/	n/a	0 2.9 g/	cm3 (0 0	.105 lb/incł	13)
Process media gauge max pressure 316L sensors [bar (psi)]	800 bar at 20 °C 640 bar at 180 °C (Derat- ing is lin- ear)	230 bar at 20°C (3336 PSI at 68 °F)	100 bar at 20 °C (68 °F)	230 bar at 20°C (3336 PSI at 68 °F)	n/a	n/a	130 bar (1885 psi) at 20-180 °C (68 °F-356 °F)	265 bar at 20°C (3844 PSI at 68 °F)	130 bar at 20°C (1885 PSI at 68 °F)
Process media gauge max pressure Hastelloy C22 sen- sors [bar (psi)]	n/a	365 bar at 20 ℃ (5294 PSI at 68 °F)	n/a	350 bar at 20°C (5076 PSI at 68 °F)	1000 bar at max 20°C (14503 psi)	410 bar (5945 psi) at 20-180 °C (68 °F-356 °F)	n/a	410 bar at 20°C (5946 PSI at 68 °F	200 bar at 20°C (2900 PSI at 68 °F)

Technical data

11.3 Construction

	DI 1/1.5/2.1/3	DI 6/15
Т6	75	49
Т5	100	100
Τ4	135	135
Т3	180	180

Table 11-8 Ex conditions: Max. temperature vs. temperature classifaction (T amb: -20°C to +50°C)

See also

Pressure - temperature ratings (Page 122)

11.3 Construction

Table 11-9	Designated use
------------	----------------

Description	Specification
Measurement of process media	Fluid Group 1 (suitable for dangerous fluids)
	Aggregate state: Paste/light slurry, liquid and gas

Table 11-10 Function and system design

Description	Specification
Measuring principle	Coriolis
System architecture	 Point-to-point (1 Modbus RTU master - 1 trans- mitter slave)
	 Multidrop (1 Modbus RTU master - up to 32 transmitter slaves per segment. Max 247 slaves)

The MASS2100 and FC300 7ME4817-... is preconfigured for integration with the SITRANS FCT070.

Note

NPT glands

When using NPT glands, user must take care when packing threads and installing cables that sufficient tightness is obtained to prevent ingress of moisture.

Design 11.4

Table 11-11	Sensor design
-------------	---------------

Description	Specification		
Dimension	See Dimension drawings (Page 127)		
Process connectors	• EN1092-1 B1, PN40, PN100		
	• ISO 228-1 G *		
	• ASME B1.20.1 NPT *		
	• ASME B16.5, CI 150, CI 600		
	• DIN 11851 **		
	• ISO 2852 **		
	• ISO 2853 **		
Heated enclosure ***	EN1092-1 B1, PN40		
	ASME B16.5, Cl 150		
Electrical connection	M12 connector with 4-wire cable		
	Standard cable with M20 connector		
	 Standard cable with polymer / brass / stainless steel cable glands (metric or NPT) 		
	 Armored cable with stainless steel armored ca- ble glands (metric or NPT) 		
	Conduit entries (metric or NPT)		
Material			
Measuring tubes	• AISI 316L / EN 1.4435		
	Hastelloy C22 / UNS N06022		
Process connectors	• Standard:		
	 AISI 316L / EN 1.4435 or EN 1.4404 		
	 Hastelloy C22 / UNS N06022 		
Sensor enclosure	• EN 1.4301, AISI 316L		
DSL enclosure	Aluminium with corrosion-resistant coating		
Measuring tube design	One single bend tube welded directly to the process connections at each end		
Self-draining design	Yes, when mounted in correct position (sensor type specific direction)		
	DN4 self-draining not possible		

*: Pressure ratings depend on sensor material **: Pressure ratings depend on process connection dimension

***: Maximum media temperature 180°C

11.6 Cables and cable entries

11.5 Basic electrical requirement for master system

Table 11-12	Power unit
-------------	------------

Description	Specification
Protection class	Class I (EN60950)
Galvanic isolation primary/secondary	SELV acc. to EN 60950 and EN 50178 or equivalent
Master/Receiver	Isolation 500 VAC

11.6 Cables and cable entries

The following information applies to cables and cable glands supplied as accessories to the device.

Table 11-13 Signal cable, basic data

Description	Specification		
Number of conductors	4		
Square area [mm²]	0.326 (AWG 22/7)		
Screen	Common shield for all 4 conductors		
Outside color	Gray (RAL 7001)		
External diameter [mm]	6.5		
Maximum length	150 m (492 ft.)		
Installation environment	Industrial including chemical processing plants		
Insulation material	Special polyolefin		
Halogen-free	Yes		
RoHS compliant	Yes		
Torsional strength	 >3 million cycles at ± 180° on 200 mm 		
	Not adapted for garland mounting (festoon)		
Permissible temperature range [°C (°F)]	-40 to +80 (-40 to +176)		
Min. bending radius allowed	Single 5 X ø		

Table 11-14 Analog connection

Description	Specification		
Number of conductors	10 (5x2)		
Square area [mm ²]	0.35		
Screen [m]	Twisted and screened in pairs		
Outside color	Blue		
External diameter [mm]	12		
Maximum length	15		
Installation environment	Industrial including chemical processing plants		

11.7 Operating conditions

Description	Specification
Insulation material	PVC
Halogen-free	Yes
RoHS compliant	Yes
Permissible temperature range [°C (°F)]	-20 to +105

Table 11-15 Cable glands and entries

Description	Specification
Glands	Material
	– Nylon ¹⁾
	 Brass/Ni plated
	 Stainless steel AISI 316/1.4404
	Cable cross section
	 Ø 5 to 10 mm (0.20" to 0.39")
Entry	• 1 x M20 or 1 X NPT ½" for communication

 $^{1)}$: If operating temperature is below -20 °C (-4 °F), use Brass/Ni plated or stainless steel cable glands.

Note

Ex installation

Glands must be Ex-d certified.

11.7 Operating conditions

Table 11-16 Basic conditions

Description		Specification
Ambient temperature (°C[°F]) (Humidity max. 90 %)	Operation:	
	Transmitter	-40 to +60 [-40 to +140]
Ambient temperature (°C[°F]) (Humidity max. 90 %)	Storage:	
	Transmitter	
		-40 to +70 [-40 to +158]
Climate class		DIN 60721-3-4
Altitude		Up to 2000 m (6560 ft)
Relative humidity [%]		95
EMC performance		EN/IEC 61326-1 (Industry)

11.10 Certificates and approvals

Description	Specification
Cleaning method	• CIP
	• SIP

11.8 Process variables FCT010

Description	Specification
Primary process variables	Mass flow
	• Density
	Medium temperature
Derived process variable	Volume flow

11.9 Approvals note

Note

Device-specific approvals

Always refer to nameplates on the device for device-specific approvals.

11.10 Certificates and approvals

Intrinsic safety" type of protection	n
ATEX/IECEx	ll 2(1) G
Sira 17ATEX1215X	ll 1 (1) D
	ll 2(1) D)
	Ex db ia [ia Ga] IIC T6 Gb
	Ex db [ia Ga] IIC T6 Gb
	Ex ia [ia] IIIC T85°C Da
	Ex tb [ia Da] IIIC T85°C Db
	Tamb = -20° C to $+60^{\circ}$ C
Pressure equipment	• 2014/68/EU Pressure Equipment Directive (PED)
	Canadian Registration Number (CRN)

FC300 (can be installed in Zone 0)	
"Intrinsic safety" type of protection	
ATEX/IECEx	II 1G Ex ia IIC T6T3 Ga
DEMKO 05 ATEX 138072X	
cCSAus (Canada, USA)	Canada:
	Class I Division 1.
	Class I Div. 1 Grp. A, B, C, D.
	Ex ia IIC T6T3 IIC Ga
	USA:
	Class I Division 1.
	Class I Div. 1 Grp. A, B, C, DA
	AEx ia IIC T6T3 IIC Ga
EU Declaration of Conformity	A5E31814816A/010
Pressure equipment	• 2014/68/EU Pressure Equipment Directive (PED)
	Canadian Registration Number (CRN)

MASS 2100 - compact version (can be installed in Zone 0, 20)	
--	--

"Intrinsic safety" type of protection	
ATEX/IECEx	Ex ia IIC T6T3 Ga
	Ex ia IIIC T135°C Da (For dust applications (IIIC) the maxi- mum ambient temperature is limited to 100°C according to IEC 60079-11 table 4.)
cULus (Canada, USA)	Canada:
	Class I+II+III Division 1. Grp. A, B, C, D, E, F, G
	Ex ia IIC T6T3 Ga
	Ex ia IIIC T135°C Da
	USA:
	Class I Division 1.
	Class I+II+III Division 1. Grp. A, B, C, D, E, F, G.
	AEx ia IIC T6T3 Ga
	AEx ia IIIC T135°C Da (For dust applications (IIIC) the max- imum ambient temperature is limitedto 100°C according to IEC 60079-11 table 4.)
EU Declaration of Conformity	A5E31814816A/010
Pressure equipment	• 2014/68/EU Pressure Equipment Directive (PED)
	Canadian Registration Number (CRN)

11.11 SensorFlash

'Intrinsic safety" type of protection	
ATEX/IECEx	Ex ia IIC T6T3 Ga
	Ex ia IIIC T135°C Da (For dust applications (IIIC) the maxi mum ambient temperature is limited to 100°C according to IEC 60079-11 table 4.)
cULus (Canada, USA)	Canada:
	Class I+II+III Division 1. Grp. A, B, C, D, E, F, G
	Ex ia IIC T6T3 Ga
	Ex ia IIIC T135°C Da
	USA:
	Class I Division 1.
	Class I+II+III Division 1. Grp. A, B, C, D, E, F, G.
	AEx ia IIC T6T3 Ga
	AEx ia IIIC T135°C Da (For dust applications (IIIC) the max imum ambient temperature is limited to 100°C according to IEC 60079-11 table 4.)
EU Declaration of Conformity	A5E31814816A/010
Pressure equipment	• 2014/68/EU Pressure Equipment Directive (PED)
	Canadian Registration Number (CRN)

MASS 2100 - remote version (can be installed in Zone 0, 20)

SensorFlash 11.11

Description	Specification
	Micro SD card
Capacity	4 GB
File system support	FAT32 / 8.3
Temperature range Operation: Storage:	-40 to +85 °C (-40 to 185 °F) -40 to +100 °C (-40 to 212 °F)

11.12 Modbus Communication Specification

Description	Specification		
Device type	Slave		
Baud rates	• 9600		
	• 19 200 (Factory setting FCT010)		
	• 38 400		
	• 57 600		
	• 76 800		
	• 115 200 (Factory setting DSL/FCT070)		
Number of stations	Max. 31 per segment without repeaters		
Device address range	1 to 247		
Protocol	Modbus RTU		
Electrical interface	RS-485, 2-wire		
Connector type	M12 or cable termination		
Supported function codes	• 3: read holding registers		
	16: write multiple registers		
	8: diagnostics		
Broadcast	No ¹⁾		
Maximum cable length [m]	600 meters (@ 115 200 bits/sec)		
Standard	Modbus over serial line v 1.0 ²⁾		
Certification	one		
Device Profile	None		

Table 11-19 Modbus communication specification

¹⁾: Standard restriction. The standard requires a LED indicator for visual diagnosis. This device does not support a LED indicator. This device does not react to any Broadcast commands.

²⁾: According to the Specification & Implementation guide v. 1.0 available at the Modbus Organization website

Note

Storage location

All Modbus settings of the device are stored in a non-volatile memory.

11.13 PED

The pressure equipment directive 2014/68/EU applies to the alignment of the statutory orders of the European member states for pressure equipment. Such equipment in the sense of the directive includes vessels, pipelines and accessories with a maximum allowable pressure of more than 0.5 bar above atmospheric. Flowmeters are considered as piping.

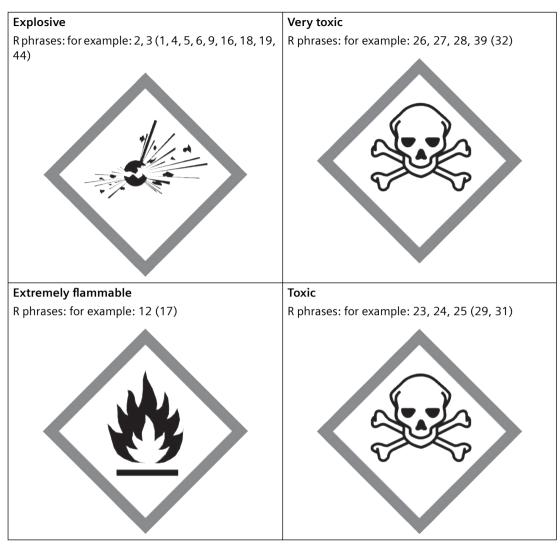
11.13 PED

A detailed risk analysis of the flowmeter has been performed in accordance with the PED 2014/68/EU. All risks are assessed to be "none" provided that the procedures and standards referenced in these operating instructions are observed.

Division according to the danger potential

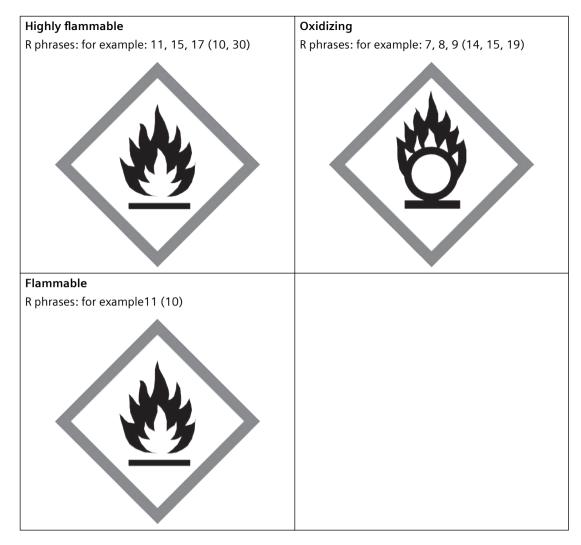
Flowmeters which are categorized as piping are divided into categories according to danger potential (medium, pressure, nominal diameter). The flowmeters fall into the categories I to III or they are manufactured according to Paragraph 3 - Sound Engineering Practice (SEP).

The following criteria are decisive for assessment of the danger potential and are also shown in Diagrams 1 to 4, see Diagrams (Page 117).


Fluid group	Group 1 or 2
Aggregate state	Liquid or gaseous
Type of pressur- ized equipment	
– Pipeline	Product of pressure and volume (PS * V [barL])

The maximum allowable temperature for the used liquids or gases is the maximum process temperature which can occur, as defined by the user. This must be within the limits defined for the equipment.

Division of media (liquid/gaseous) into the fluid groups


Fluids are divided according to Article 13 into the following fluid groups:

11.13 PED

Group 1 fluids

11.13 PED

Group 2 fluids

All fluids not belonging to Group 1.

Also applies to fluids which are for example dangerous to the environment, corrosive, dangerous to health, irritant or carcinogenic (if not highly toxic).

Conformity assessment

Flowmeters of categories I to III comply with the safety requirements of the directive. They are affixed with the CE mark and an EC declaration of conformity is provided.

The flowmeters are subjected to the conformity assessment procedure - Module H.

Flowmeters according to Article 4 Paragraph 3 are designed and manufactured in accordance with sound engineering practice. PED conformity reference is not affixed to the CE mark.

Diagrams

Gases of fluid group 1

- Pipelines according to Article 4 (a) (i) First dash
- Exception: unstable gases belonging to Categories I and II must be included in Category III.

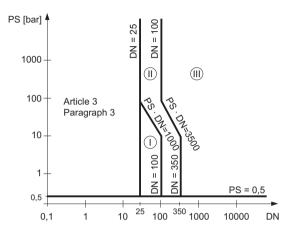


Figure 11-1 Diagram 1

Gases of fluid group 2

- Pipelines according to Article 4 (a) (i) Second dash
- Exception: liquids at temperatures > 350 °C belonging to Category II must be included in Category III.

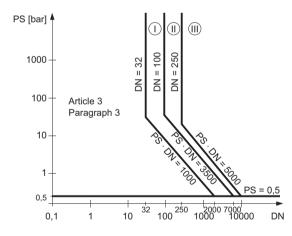


Figure 11-2 Diagram 2

11.14 Pressure - temperature ratings

Liquids of fluid group 1

• Pipelines according to Article 4 (a) (ii) First dash

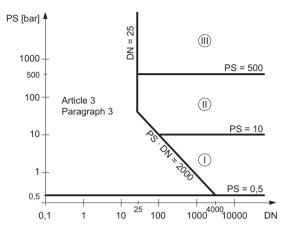


Figure 11-3 Diagram 3

Liquids of fluid group 2

• Pipelines according to Article 4 (a) (ii) Second dash

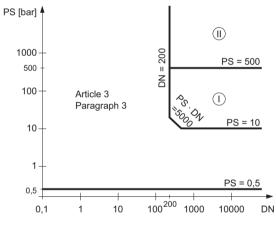


Figure 11-4 Diagram 4

11.14 Pressure - temperature ratings

Pressure - temperature ratings are determined by process connection material and applicable standards. The tables below detail the allowed maximum process pressure for sensor variants with stainless steel and Hastelloy measuring tubes.

With two major exceptions, the pressure rating of the flow sensors is independent of the process medium temperature. Design rules for flange connections in both the EN1092-1 and ASME B16.5 standards dictate pressure derating with increasing temperature. The charts below show the effect of process medium temperature on the pressure ratings for the flanges within the product program.

11.14.1 Pressure - temperature ratings (stainless steel sensors)

PN (bar)			Tempe	rature TS (°C)	1	
	-50	0	50	100	150	180
16	16.0	16.0	16.0	15.2	13.8	13.1
40	40.0	40.0	40.0	37.9	34.5	32.9
63	63.0	63.0	63.0	59.7	51.8	51.8
100	100.0	100.0	100.0	94.8	86.2	82.1

Table 11-20 EN1092-1 [bar]

Note

Maximum pressure depends on process connection.

Table 11-21 ISO228-G and ASME B1.20.1 NPT [bar]

DN	Temperature TS (°C)				
	-40 to +38	180			
1,5	230	220			
3	230	230			
4	130	124			
6	226	217			
15	130	124			

Table 11-22 ASME B16.5 [bar]

Class / Group Temperature TS (°C)							
	-50	0	50	100	150	200	
150	19	19	18.4	16.2	14.8	13.7	
600	99.3	99.3	96.2	84.4	77.0	71.3	

Table 11-23 DIN 11851 [bar]

PN (bar)	N (bar) Temperature TS (°C)					
	-50	0	50	100	140	
40	40	40	40	40	40	

Technical data

11.14 Pressure - temperature ratings

PN (bar) / DN			Temperatur	e TS (°C)	
	-50	0	50	100	140
25	25	25	25	25	25

Table 11-24 DIN 32676 & ISO 2852 [bar]

Table 11-25 DIN 11864 & ISO 2853 [bar]

PN (bar) / DN	I		Temperature	e TS (°C)		
	-50	0	50	100	140	
40	40	40	40	40	40	

Note

Test pressure

Maximum allowable test pressure (MATP) for the flowmeter and process connection is 1.5 times the nominal pressure.

11.14.2 Pressure - temperature ratings (Hastelloy sensors)

Table 11-26 EN1092-1 [bar]

PN (bar)			Tempe	erature TS (°C)		
	-50	0	50	100	150	180
16	16.0	16.0	16.0	16.0	16.0	16.0
40	40.0	40.0	40.0	40.0	40.0	40.0
63	63.0	63.0	63.0	63.0	63.0	63.0
100	100.0	100.0	100.0	100.0	100.0	100.0

Table 11-27 ISO228-G and ASME B1.20.1 NPT [bar]

DN	Temperature TS (°C)				
	-40 to +38	180			
1,5	350	220			
3	410	230			
4	410	124			
6	407	217			
15	200	124			

Class	Temperature TS (°C)					
	-50	0	50	100	150	180
150	20.0	20	19.5	17.7	15.8	14.6
600	103.4	103.4	103.4	103.0	100.3	98.1

Table 11-28 ASME B16.5 [bar]

Table 11-29 DIN 11851 [bar]

PN (bar) / DN		Temperature TS (°C)						
	-50	0 50 100 140						
40	40	40	40	40	40			

Technical data

11.14 Pressure - temperature ratings

Dimension drawings

12.1 FC300 dimensions

FC300 DN4 Standard version

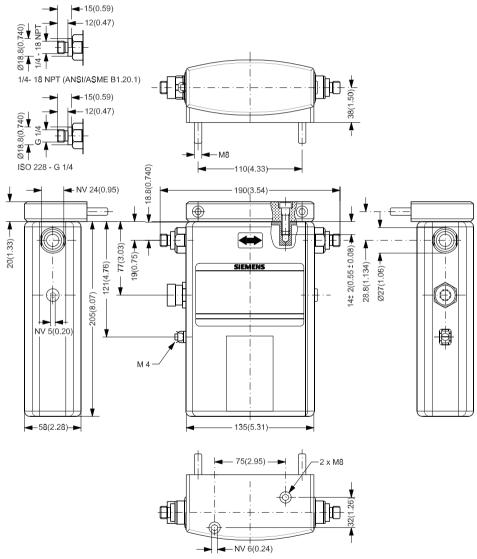
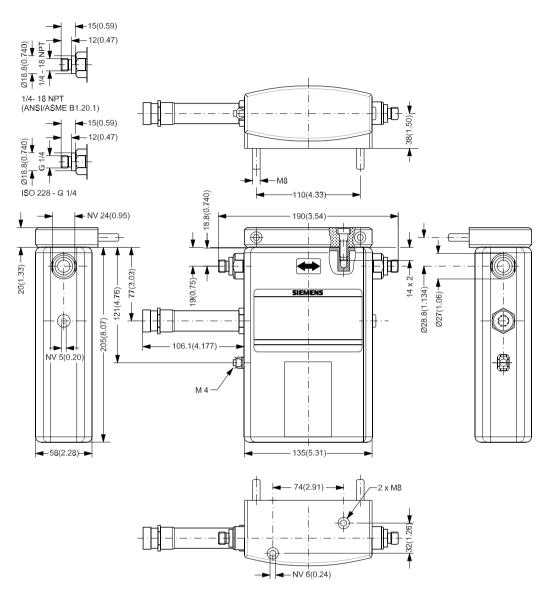



Figure 12-1 FC300 DN4 HP only available with 9/16" 18UNF connectors Enclosure is not rated for pressure containment.

12.1 FC300 dimensions

FC300 DN4 high temperature version

Enclosure is not rated for pressure containment.

12.2 MASS 2100 dimensions

MASS 2100 DI 1.0

Figure 12-2 MASS 2100 DI 1.0 only available with 9/16" 18-UNF connectors

MASS 2100 DI 1.5 & DI 2.1

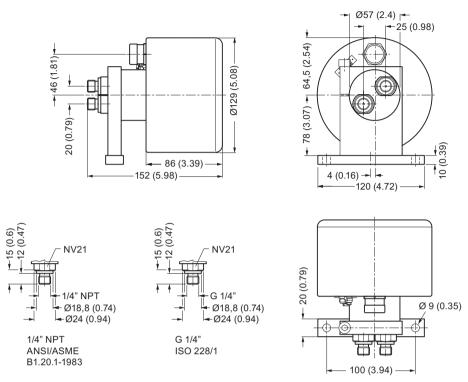


Figure 12-3 MASS 2100 DI 1.5 and DI 2.1, standard version, Dimensions in mm (inch)

MASS 2100 DI 1.5 High-temperature version

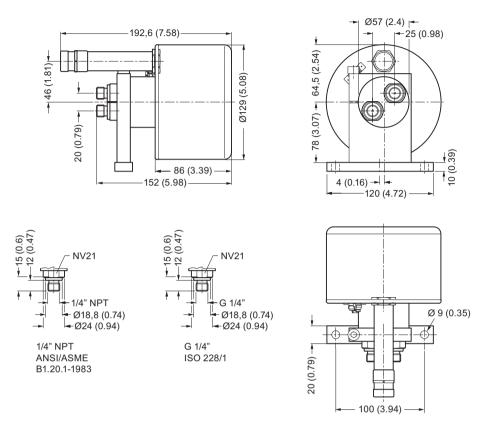
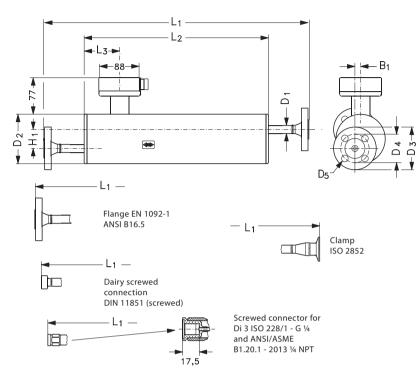



Figure 12-4 MASS 2100 DI 1.5, High-temperature version, Dimensions in mm (inch)

Remote versions

Sen- sor size	Connection	l	L1	L2	L3	H1	B1	D1	D2	D3	D4	D5
Dl (Inch)	Type (size)	Pressure rating	mm (ind	ch)			•	•		·		
3 (1/8")	Pipe thread ISO 228/1 - G ¹ / ₄ (¹ / ₄ ")	PN 100	400 (15.75)	280 (11.02)	75.5 (2.97)	60 (2.36)	0 (0)	21.3 (0.84)	104 (4.09)	-	-	-
	Pipe thread AN- SI/ASME B 1.20.1 - ¼" NPT (¼")	PN 100	400 (15.75)	280 (11.02)	75.5 (2.97)	60 (2.36)	0 (0)	21.3 (0.84)	104 (4.09)	-	-	-

Sen- sor size	Connection	I	L1	L2	L3	H1	B1	D1	D2	D3	D4	D5
Dl (Inch)	Type (size)	Pressure rating	mm (ine	ch)								
6 (¼")	Pipe thread ISO 228/1 - G ¹ / ₄ (¹ / ₄ ")	PN 100										
	Pipe thread AN- SI/ASME B 1.20.1 - ¼" NPT (¼")	PN 100										
	Flange EN 1092-1 (DN 10)	PN 100	580 (22.83)	390 (15.35)	62.0 (2.44)	40 (1.57)	12 (0.47)	17.0 (0.67)	104 (4.09)	100 (3.94)	70.0 (2.76)	14.0 (0.55)
		PN 40	560 (22.05)	390 (15.35)	62.0 (2.44)	40 (1.57)	12 (0.47)	17.0 (0.67)	104 (4.09)	90.0 (3.54)	60.0 (2.36)	14.0 (0.55)
	Flange AN- SI B16.5 (½")	Class 150	623 (24.57)	390 (15.35)	62.0 (2.44)	40 (1.57)	12 (0.47)	17.0 (0.67)	104 (4.09)	88.9 (3.5)	60.5 (2.38)	15.7 (0.62)
		Class 600	608 (23.94)	390 (15.35)	62.0 (2.44)	40 (1.57)	12 (0.47)	17.0 (0.67)	104 (4.09)	95.3 (3.75)	66.5 (2.62)	15.7 (0.62)
	Screwed connec- tion DIN 11851 (DN10)	PN 40	532 (20.94)	390 (15.35)	62.0 (2.44)	40 (1.57)	12 (0.47)	17.0 (0.67)	104 (4.09)		-	-
	Clamp ISO 2852 (25 mm)	PN 16	568 (22.44)	390 (15.35)	62.0 (2.44)	40 (1.57)	12 (0.47)	17.0 (0.67)	104 (4.09)	-	-	-

Dimension drawings

12.2 MASS 2100 dimensions

Sen- sor size	Connectior	1	L1	L2	L3	H1	B1	D1	D2	D3	D4	D5
DI (Inch)	Type (size)	Pressure rating	mm (in	ch)						1		
15 (½")	Pipe thread ISO 228/1 - G ¹ / ₄ (¹ / ₄ ")	PN 100										
	Pipe thread AN- SI/ASME B 1.20.1 - ¼" NPT (¼")	PN 100										
	Flange EN 1092-1 (DN15)	PN 100	633 (24.96)	444 (17.48)	75.5 (2.97)	44 (1.73)	20 (0.79)	21.3 (0.84)	129 (5.08)	105 (2.95)	75.0 (4.13)	14.0 (0.55)
		PN 40	620 (24.41)	444 (17.48)	75.5 (2.97)	44 (1.73)	20 (0.79)	21.3 (0.84)	129 (5.08)	95.0 (3.74)	65.0 (2.56)	14.0 (0.55)
	Flange AN- SI B16.5 (¾")	Class 150	717 (28.23)									
		Class 600	740 (29.13)									
	Flange AN- SI B16.5 (1")	Class 150	757 (29.8)									
	Flange EN 1092-1 (DN25)	PN 100	760 (29.92)									
		PN 40	722 (28.43)									
	Flange AN- SI B16.5 (½")	Class 150	639 (25.16)	444 (17.48)	75.5 (2.97)	44 (1.73)	20 (0.79)	21.3 (0.84)	129 (5.08)	88.9 (3.5)	60.5 (2.38)	15.7 (0.62)
		Class 600	659 (25.98)	444 (17.48)	75.5 (2.97)	44 (1.73)	20 (0.79)	21.3 (0.84)	129 (5.08)	95.3 (3.75)	66.5 (2.62)	15.7 (0.62)
	Screwed connec- tion DIN 11851 (DN15)	PN 40	586 (23.07)	444 (17.48)	75.5 (2.97)	44 (1.73)	20 (0.79)	21.3 (0.84)	129 (5.08)	-	-	-
	Clamp ISO 2852 (25 mm)	PN 16	622 (24.57)	444 (17.48)	75.5 (2.97)	44 (1.73)	20 (0.79)	21.3 (0.84)	129 (5.08)	-	-	-

12.3 Transmitter dimensions

12.3 Transmitter dimensions

Compact version

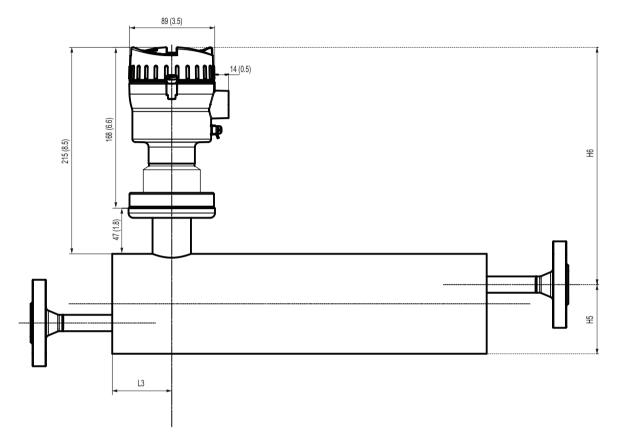
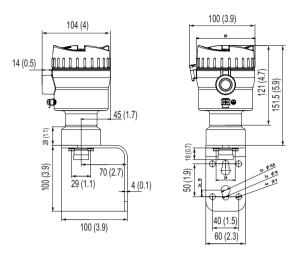



Table 12-2 MASS2100 with FCT010 transmitter

Sensor size	L ₃	H ₅	H ₆	$H_{5} + H_{6}$
	mm (inch)	mm (inch)	mm (inch)	mm (inch)
3 (1/8)	75.5 (2.9)	82 (3.23)	237 (9.3)	319 (12.5)
6 (1/4)	62 (2.44)	72 (2.83)	247 (9.7)	319 (12.5)
15 (1/2)	75.5 (2.9)	86.5 (3.4)	257 (10.11)	343.5 (13.5)

12.3 Transmitter dimensions

Remote version

Dimensions in mm (inch)

Product documentation and support

A.1 Product documentation

Process instrumentation product documentation is available in the following formats:

- Certificates (<u>http://www.siemens.com/processinstrumentation/certificates</u>)
- Downloads (firmware, EDDs, software) (<u>http://www.siemens.com/processinstrumentation/</u> <u>downloads</u>)
- Catalog and catalog sheets (http://www.siemens.com/processinstrumentation/catalogs)
- Manuals (<u>http://www.siemens.com/processinstrumentation/documentation</u>) You have the option to show, open, save, or configure the manual.
 - "Display": Open the manual in HTML5 format
 - "Configure": Register and configure the documentation specific to your plant
 - "Download": Open or save the manual in PDF format
 - "Download as html5, only PC": Open or save the manual in the HTML5 view on your PC

You can also find manuals with the Mobile app at Industry Online Support (<u>https://support.industry.siemens.com/cs/ww/en/sc/2067</u>). Download the app to your mobile device and scan the device QR code.

Product documentation by serial number

Using the PIA Life Cycle Portal, you can access the serial number-specific product information including technical specifications, spare parts, calibration data, or factory certificates.

Entering a serial number

- 1. Open the PIA Life Cycle Portal (<u>https://www.pia-portal.automation.siemens.com</u>).
- 2. Select the desired language.
- 3. Enter the serial number of your device. The product documentation relevant for your device is displayed and can be downloaded.

To display factory certificates, if available, log in to the PIA Life Cycle Portal using your login or register.

Scanning a QR code

- 1. Scan the QR code on your device with a mobile device.
- 2. Click "PIA Portal".

To display factory certificates, if available, log in to the PIA Life Cycle Portal using your login or register.

Certification documents including calibration report are supplied with each sensor included on the SensorFlash. Material, pressure test, and factory conformance certificates are optional at ordering.

A.2 Technical support

Note

EAC declaration

The EAC declaration is available on the SensorFlash SD card delivered with the device.

A.2 Technical support

Technical support

If this documentation does not completely answer your technical questions, you can enter a Support Request (<u>http://www.siemens.com/automation/support-request</u>).

Additional information on our technical support can be found at Technical Support (<u>http://</u><u>www.siemens.com/automation/csi/service</u>).

Service & support on the Internet

In addition to our technical support, Siemens offers comprehensive online services at Service & Support (<u>http://www.siemens.com/automation/service&support</u>).

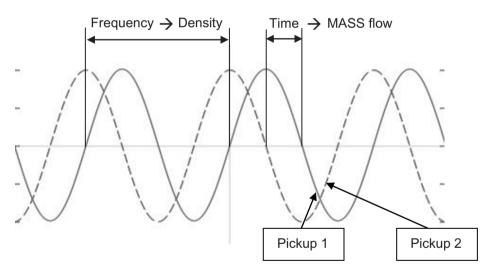
Contact

If you have further questions about the device, contact your local Siemens representative at Personal Contact (<u>http://www.automation.siemens.com/partner</u>).

To find the contact for your product, go to "all products and branches" and select "Products & Services > Industrial automation > Process instrumentation".

Contact address for business unit: Siemens AG Digital Industries Process Automation Östliche Rheinbrückenstr. 50 76187 Karlsruhe, Germany

Technical reference


B.1 Theory of operation

The Coriolis principle of measurement

The flow measurement is based on the Coriolis law of motion. Particles moving in a rotating *I* oscillating system will resist imposed oscillations in a manner consistent with their mass and velocity (momentum).

The SITRANS F C sensors are energized by an electromagnetic driver circuit which oscillates the pipes at their resonant frequency. Two pickups are placed symmetrically on either side of the driver to provide position signals for digital processing.

When the media flows through the sensor, Coriolis force will act on the measuring tubes and cause deflection which can be measured as a phase shift between Pickup 1 and Pickup 2. The phase shift is proportional to the mass flowrate.

The frequency (or period) of the vibration is a direct function of the process media density.

The frequency and amplitude of the driver is regulated to ensure a stable output from the 2 pickups. The temperature of the sensor tubes is measured to provide accurate compensation for changes in the material stiffness. As a result the process media temperature is also accurately measured.

The flow proportional phase signal from the pickups, the temperature measurement and the driver frequency enable calculation and reporting of mass, density, volume, and temperature.

B.2 Sensor dimension dependent default settings

Digital signal processing (DSP)

The analog to digital conversion takes place in an ultra low noise sigma delta converter with high signal resolution. With fast digital signal processing mass flow and density values are calculated using a patented DFT technology (Discrete Fourier Transformation). The combination of this patented DFT technology and the fast DSP enables short response time (< 10 ms) to changes in the measured values.

The built-in noise filter is configurable and can be used for improving the performance of the flowmeter, in case the installation and application conditions are not ideal. Typical process noise such as gas bubbles (two-phase-flow) can be reduced through the filter functions.

B.2 Sensor dimension dependent default settings

B.2.1 Mass flow

Sensor size	Default value kg/s				
Upper alarm limit and Upper warning li	Upper alarm limit and Upper warning limit				
DI 1	0.010				
DI 1.5	0.022				
DI 2.1	0.043				
DI 3	0.088				
DI 6	0.353				
DI 15	2.209				
Lower alarm limit and Lower warning li	mit				
DI 1	-0.010				
DI 1.5	-0.022				
DI 2.1	-0.043				
DI 3	-0.088				
DI 6	-0.353				
DI 15	-2.209				

Sensor size	Default value kg/s	Default value kg/h					
Low flow cut-off							
DI 1	0.0000272	0.0980					
DI 1.5	0.0000542	0.195					
DI 2.1	0.000117	0.42					
DI 3	0.000250	0.90					
DI 6	0.00139	5					
DI 15	0.0106	38					

B.2 Sensor dimension dependent default settings

FC300

Sensor type	Sensor size	Default value kg/s					
Upper alarm limit and Upper warning limit							
DN4 HP	2	0.039					
DN4 C22	3	0.088					
DN4 316	3.5	0.120					
Lower alarm limit and Lower wa	rning limit						
DN4 HP	2	-0.039					
DN4 C22	3	-0.088					
DN4 316	3.5	-0.120					

Sensor type Sensor size		Default value kg/s	Default value kg/h	
Low flow cut-off				
DN4 HP	2	0,0000972	0.35	
DN4 C22	3	0,000264	0.95	
DN4 316	3.5	0,000389	1.4	

B.2.2 Volume flow

Sensor size	Default value m ³ /s			
Upper alarm limit and Upper warning limit				
DI 1	0.0002			
DI 1.5	0.00045			
DI 2.1	0.00088			
DI 3	0.0018			
DI 6	0.0072			
DI 15	0.0451			
Lower alarm limit and Lower warning li	nit			
DI 1	-0.0002			
DI 1.5	-0.00045			
DI 2.1	-0.00088			
DI 3	-0.0018			
DI 6	-0.0072			
DI 15	-0.0451			

Sensor size Default value m³/s Default value m³/h		Default value m ³ /h
Low flow cut-off		
DI 1	2.72222E-08	0.000098

Technical reference

B.2 Sensor dimension dependent default settings

Sensor size	Default value m ³ /s	Default value m ³ /h
DI 1.5	5.41667E-08	0.000195
DI 2.1	1.16667E-07 0.00042	
DI 3	0.0000025	0.0009
DI 6	1.38889E-06	0.005
DI 15	1.05556E-05	0.038

FC300

Sensor type	Sensor size	Default value m³/s	
Upper alarm limit and Upper warning limit			
DN4 HP	2	0.00080	
DN4 C22	3	0.0018	
DN4 316	3.5	0.0025	
Lower alarm limit and Lower warning limit			
DN4 HP	2	-0.00080	
DN4 C22	3	-0.0018	
DN4 316	3.5	-0.0025	

Sensor type	Sensor size	Default value m ³ /s	Default value m ³ /h
Low flow cut-off			
DN4 HP	2	9.72222E-08	0.00035
DN4 C22	3	2.63889E-07	0.00095
DN4 316	3.5	3.88889E-07	0.0014

B.2.3 Standard volume flow

Sensor size	Default value m ³ /s	
Upper alarm limit and Upper warning limit		
DI 1	0.0002	
DI 1.5	0.00045	
DI 2.1	0.00088	
DI 3	0.0018	
DI 6	0.0072	
DI 15	0.045	
Lower alarm limit and Lower warning limit		
DI 1	-0.0002	
DI 1.5	-0.00045	
DI 2.1	-0.00088	

B.2 Sensor dimension dependent default settings

Sensor size	Default value m ³ /s
DI 3	-0.0018
DI 6	-0.0072
DI 15	-0.045

Sensor size	Default value m ³ /s	Default value m ³ /h	
Low flow cut-off			
DI 1	2.7222E-08	0.000098	
DI 1.5	5.41667E-08	0.000195	
DI 2.1	1.16667E-07	0.00042	
DI 3	0.0000025	0.0009	
DI 6	1.38889E-06	0.005	
DI 15	1.05556E-05	0.038	

FC300

Sensor type	Sensor size	Default value m ³ /s	
Upper alarm limit and Upper warning limit			
DN4 HP	2	0.00080	
DN4 C22	3	0.0018	
DN4 316	3.5	0.0025	
Lower alarm limit and Lower warning limit			
DN4 HP	2	-0.00080	
DN4 C22	3	-0.0018	
DN4 316	3.5	-0.0025	

Sensor type	Sensor size	Default value m ³ /s	Default value m ³ /h
Low flow cut-off			
DN4 HP	2	9.72222E-08	0.00035
DN4 C22	3	2.63889E-07	0.00095
DN4 316	3.5	3.88889E-07	0.0014

B.2.4 Fraction

Sensor size	Unit	Default value
Upper alarm limit and Upper warning limit		
DI 1	Mass flow kg/s	n/a
	Volume flow m ³ /s	n/a

Technical reference

B.2 Sensor dimension dependent default settings

Sensor size	Unit	Default value	
DI 1.5	Mass flow kg/s	0.022	
	Volume flow m ³ /s	0.00045	
DI 2.1	Mass flow kg/s	0.043	
	Volume flow m ³ /s	0.00088	
DI 3	Mass flow kg/s	0.088	
	Volume flow m ³ /s	0.0018	
DI 6	Mass flow kg/s	0.353	
	Volume flow m ³ /s	0.0072	
DI 15	Mass flow kg/s	2.209	
	Volume flow m ³ /s	0.0451	
Lower alarm limit and	Lower warning limit		
DI 1	Mass flow kg/s	n/a	
	Volume flow m ³ /s	n/a	
DI 1.5	Mass flow kg/s	-0.022	
	Volume flow m ³ /s	-0.00045	
DI 2.1	Mass flow kg/s	-0.043	
	Volume flow m ³ /s	-0.00088	
DI 3	Mass flow kg/s	-0.088	
	Volume flow m ³ /s	-0.0018	
DI 6	Mass flow kg/s	-0.353	
	Volume flow m ³ /s	-0.0072	
DI 15	Mass flow kg/s	-2.209	
	Volume flow m ³ /s	-0.0451	

FC300

Sensor type	Sensor size	Unit	Default value
Upper alarm limit	and Upper warning limit		
DN4 HP	2	Mass flow kg/s	n/a
		Volume flow m ³ /s	n/a
DN4 C22	3	Mass flow kg/s	0.088
		Volume flow m ³ /s	0.0018
DN4 316	3.5	Mass flow kg/s	0.120
		Volume flow m ³ /s	0.0025
Lower alarm limit	and Lower warning limit		
DN4 HP	2	Mass flow kg/s	n/a
		Volume flow m ³ /s	n/a
DN4 C22	3	Mass flow kg/s	-0.088
		Volume flow m ³ /s	-0.0018
DN4 316	3.5	Mass flow kg/s	-0.120
		Volume flow m ³ /s	-0.0025

B.2 Sensor dimension dependent default settings

B.2.5 Zero point adjustment

MASS 2100

Sensor size	Default value kg/s				
Standard deviation limit					
DI 1	0				
DI 1.5	0.000002				
DI 2.1	0.000002				
DI 3	0.00002				
DI 6	0.0001				
DI 15	0.0004				

Sensor size	Default value kg/s	Default value kg/s		
Zero offset limit				
DI 1	0.0000272			
DI 1.5	0.0000542			
DI 2.1	0.000117			
DI 3	0.000250			
DI 6	0.00139			
DI 15	0.0106			

Sensor size	Default value kg/s	Default value kg/h					
Low flow cut-off							
DI 1	0.0000272	0.0980					
DI 1.5	0.0000542	0.195					
DI 2.1	0.000117	0.42					
DI 3	0.000250	0.90					
DI 6	0.00139	5					
DI 15	0.0106	38					

FC300

Sensor type	Sensor size	Default value kg/s	
Standard deviation limit			
DN4 HP	2	0	
DN4 C22	3	0.000002	
DN4 316	3.5	0.000002	

Technical reference

B.4 Float definition

Sensor type	Sensor size	Default value kg/s		
Zero offset limit				
DN4 HP	2	0.0000972		
DN4 C22	3	0.000264		
DN4 316	3.5	0.000389		

Sensor type	iensor type Sensor size		Default value kg/h	
Low flow cut-off				
DN4 HP	2	0.0000972	0.35	
DN4 C22	3	0.000264	0.95	
DN4 316	3.5	0.000389	1.4	

B.3 Exception handling

There is a defined set of exception codes to be returned by slaves in the event of problems. All exceptions are signalled in the response from the slave by adding 80 hex to the function code of the request and following this byte by an exception code.

	Table B-1	Exception codes
--	-----------	-----------------

Exception code (dec)	Exception text	Description
01	Illegal function	The function code received in the query is not an allowable action for the slave
02	Illegal data address	The data address received in the query is not an allowable address for the slave.
03	Illegal data value	A value contained in the query data field is not an allowable value for the addressed location. This may indicate a fault in the structure of the remainder of a complex request, such that the implied length is incorrect or the number of registers is too high.
04	Slave device failure	The request is for some other reason not acceptable. It may e.g. indicate that the data value to write is evaluated to be beyond limits.

B.4 Float definition

Stuffing of multi-byte numbers into multiple Modbus RTU registers differs among Modbus devices. "Big Endian" and "Little Endian" describe the order or sequence in which multi-byte data is stored in memory. This device uses (IEEE 741) a "Big-Endian" representation for addresses and data items as default. This means that when a numerical quantity larger than a single byte is transmitted, the MOST significant byte is sent first.

Float transmission order can be changed as described in Float transmission (Page 83).

Value (decimal)	IEEE FP B MSB LSB	Regis	ster N	Registe	er N + 1
		high	low	high	low
100.0	42C80000h	42h	C8h	00h	00h
55.32	425D47AEh	42h	5Dh	47h	AEh
2.0	4000000h	40h	00h	00h	00h
1.0	3F800000h	3Fh	80h	00h	00h
-1.0	BF800000h	bFh	80h	00h	00h

Following example describes the Big-Endian representing of float IEEE741.

Read absolute massflow (4.03001)

 Query:
 01,03,08,88,00,02,46,0A

 Response:
 01,03,04,40,C3,52,93,62,C8

 Absolute mass 6.10383 kg/s

 flow =
 1

B.5 CRC calculation

The Cyclical Redundancy Checking (CRC) field is two bytes, containing a 16–bit binary value. The CRC value is first generated by the transmitting device, which appends the CRC to the message. The receiving device recalculates a CRC during receipt of the message, and compares the calculated value to the actual value it received in the CRC field. If the two values are not equal an error occurs.

In the following a short text description of how the CRC is calculated is provided. This description is then followed by a C programming example.

CRC calculation

- 1. Load a 16-bit register with FFFF hex (all 1's). Call this the CRC register.
- 2. Exclusive OR the first 8-bit byte of the message with the low-order byte of the 16-bit CRC register, putting the result in the CRC register.
- 3. Shift the CRC register one bit to the right (toward the LSB), zero–filling the MSB. Extract and examine the LSB.
- 4. (If the LSB was 0): Repeat Step 3 (another shift). (If the LSB was 1): Exclusive OR the CRC register with the polynomial value 0xA001 (1010 0000 0000 0001).
- 5. Repeat Steps 3 and 4 until 8 shifts have been performed. When this is done, a complete 8-bit byte will have been processed.
- 6. Repeat Steps 2 through 5 for the next 8-bit byte of the message. Continue doing this until all bytes have been processed.
- 7. The final content of the CRC register is the CRC value.
- 8. When the CRC is placed into the message, its upper and lower bytes must be swapped as described below.

B.5 CRC calculation

Placing the CRC into the Message

When the 16-bit CRC (two 8-bit bytes) is transmitted in the message, the low-order byte will be transmitted first, followed by the high-order byte.

For example, if the CRC value is 1241 hex (0001 0010 0100 0001):

Addr	Func	Data count	Data n	Data n+1	Data n+2	Data n+x	CRC LO	CRC HI
							0x41	0x12

CRC programming example

ing exai	mpie ble of	CDC II		for hi	ab-ord	or but	~ */			
	c fla				-	_				
	0xC1,		-					001	0	000
	0x01, 0x00,			UXUI,	UXCU,	0200,	0841,	UXUI,	UXCU,	0200,
	0x00, 0x01,			0 √ / 1	0~00	0.vC1	0.√81	0~10	0~00	0.~01
	0x01, 0x40,			UAHI,	0200,	UACI,	0.001,	040,	0200,	UACI,
	0x40, 0x41,			0x80.	0×41	0×00.	$0 \times C1$	0x81.	0×40	0×00.
	0x81,			02007	02117	02007	01101/	02017	021107	02007
	0x80,			0xC1.	0x81,	0x40.	0x01.	0xC0.	0x80.	0x41.
	0xC0,			,	,	,	,	,	,	- ,
	0xC1,			0x01,	0xC0,	0x80,	0x41,	0x00,	0xC1,	0x81,
0x40,	0x00,	0xC1,	0x81,							
0x40,	0x01,	0xC0,	0x80,	0x41,	0x00,	0xC1,	0x81,	0x40,	0x01,	0xC0,
0x80,	0x41,	0x01,	0xC0,							
0x80,	0x41,	0x00,	0xC1,	0x81,	0x40,	0x00,	0xC1,	0x81,	0x40,	0x01,
	0x80,									
	0x80,			0xC1,	0x81,	0x40,	0x01,	0xC0,	0x80,	0x41,
	0xC1,									
	0xC1,			0x01,	0xC0,	0x80,	0x41,	0x01,	0xC0,	0x80,
	0x00,									
	0x00,			0x40,	0x01,	0xC0,	0x80,	0x41,	0x00,	0xCl,
	0x40,			0 00	0 41	0 00	0 01	0 01	0 4 0	0 00
	0x41,			0x80,	0x41,	0x00,	UXCI,	UX81,	0x40,	0x00,
	0x81, 0x80,			0	000	011	000	0	001	010
	0x00, 0xC0,			UXCU,	UXOU,	UX41,	0X00,	UXCI,	UXOI,	0X40,
	0xC0, 0xC1,			0~00	0.vC1	0.∞81	0~10	0.∞01	0~0	0~80
	0x01,			0200,	UNCI,	UNUL,	0110,	0201,	0AC0,	0400,
	0x01,			0×41.	0×01.	0xC0.	0x80.	0×41.	0x00.	0xC1.
	0x40,			011127	0110 - 1	01100,	01100,	011127	01100,	01101,
-	0x41,			0x81,	0x40,	0x00,	0xC1,	0x81,	0x40,	0x01,
	0x80,			,	,	•	•	,	•	
	0x80,			0xC1,	0x81,	0x40,	0x00,	0xC1,	0x81,	0x40,
	0xC0,									
0x00,	0xC1,	0x81,	0x40,	0x01,	0xC0,	0x80,	0x41,	0x01,	0xC0,	0x80,
0x41,	0x00,	0xC1,	0x81,							
0x40										
} ;										
	ble of c fla					r byte	*/			
SCUCI	~		ar uuci		LJ L					

B.5 CRC calculation

```
0x00, 0xC0, 0xC1, 0x01, 0xC3, 0x03, 0x02, 0xC2, 0xC6, 0x06, 0x07,
0xC7, 0x05, 0xC5, 0xC4,
0x04, 0xCC, 0x0C, 0x0D, 0xCD, 0xOF, 0xCF, 0xCE, 0x0E, 0x0A, 0xCA,
0xCB, 0x0B, 0xC9, 0x09,
0x08, 0xC8, 0xD8, 0x18, 0x19, 0xD9, 0x1B, 0xDB, 0xDA, 0x1A, 0x1E,
OxDE, OxDF, Ox1F, OxDD,
0x1D, 0x1C, 0xDC, 0x14, 0xD4, 0xD5, 0x15, 0xD7, 0x17, 0x16, 0xD6,
0xD2, 0x12, 0x13, 0xD3,
0x11, 0xD1, 0xD0, 0x10, 0xF0, 0x30, 0x31, 0xF1, 0x33, 0xF3, 0xF2,
0x32, 0x36, 0xF6, 0xF7,
0x37, 0xF5, 0x35, 0x34, 0xF4, 0x3C, 0xFC, 0xFD, 0x3D, 0xFF, 0x3F,
0x3E, 0xFE, 0xFA, 0x3A,
0x3B, 0xFB, 0x39, 0xF9, 0xF8, 0x38, 0x28, 0xE8, 0xE9, 0x29, 0xEB,
0x2B, 0x2A, 0xEA, 0xEE,
0x2E, 0x2F, 0xEF, 0x2D, 0xED, 0xEC, 0x2C, 0xE4, 0x24, 0x25, 0xE5,
0x27, 0xE7, 0xE6, 0x26,
0x22, 0xE2, 0xE3, 0x23, 0xE1, 0x21, 0x20, 0xE0, 0xA0, 0x60, 0x61,
0xA1, 0x63, 0xA3, 0xA2,
0x62, 0x66, 0xA6, 0xA7, 0x67, 0xA5, 0x65, 0x64, 0xA4, 0x6C, 0xAC,
0xAD, 0x6D, 0xAF, 0x6F,
0x6E, 0xAE, 0xAA, 0x6A, 0x6B, 0xAB, 0x69, 0xA9, 0xA8, 0x68, 0x78,
0xB8, 0xB9, 0x79, 0xBB,
0x7B, 0x7A, 0xBA, 0xBE, 0x7E, 0x7F, 0xBF, 0x7D, 0xBD, 0xBC, 0x7C,
0xB4, 0x74, 0x75, 0xB5,
0x77, 0xB7, 0xB6, 0x76, 0x72, 0xB2, 0xB3, 0x73, 0xB1, 0x71, 0x70,
0xB0, 0x50, 0x90, 0x91,
0x51, 0x93, 0x53, 0x52, 0x92, 0x96, 0x56, 0x57, 0x97, 0x55, 0x95,
0x94, 0x54, 0x9C, 0x5C,
0x5D, 0x9D, 0x5F, 0x9F, 0x9E, 0x5E, 0x5A, 0x9A, 0x9B, 0x5B, 0x99,
0x59, 0x58, 0x98, 0x88,
0x48, 0x49, 0x89, 0x4B, 0x8B, 0x8A, 0x4A, 0x4E, 0x8E, 0x8F, 0x4F,
0x8D, 0x4D, 0x4C, 0x8C,
0x44, 0x84, 0x85, 0x45, 0x87, 0x47, 0x46, 0x86, 0x82, 0x42, 0x43,
0x83, 0x41, 0x81, 0x80,
0x40
} ;
unsigned short int CRC16 (unsigned char *puchMsg, unsigned short int
usDataLen)
{
   unsigned char uchCRCHi = 0xFF; /* high byte of CRC initialized */
   unsigned char uchCRCLo = 0xFF; /* low byte of CRC initialized */
  unsigned uIndex ;
                                 /* will index into CRC lookup table
*/
   while(usDataLen--)
                                  /* pass through message buffer */
   {
     uIndex = uchCRCHi ^ *puchMsg++ ; /* calculate the CRC */
     uchCRCHi = uchCRCLo ^ auchCRCHi[uIndex] ;
     uchCRCLo = auchCRCLo[uIndex] ;
   #ifdef INTEL LIKE PROCESSOR
     return (unsigned short int) ((uchCRCLo << 8) | uchCRCHi);
```

B.5 CRC calculation

```
#else
    return (unsigned short int)((uchCRCHi << 8) | uchCRCLo);
    #endif
}</pre>
```

See also

There are many ways of calculating a CRC checksum. For further information, please refer to the Modbus Organisation Website (<u>http://www.modbus.org</u>), where detailed descriptions and programming examples are available.

Modbus communication FCT010

C.1 Modbus addressing model

The device allows read/write access to the following standard Modbus RTU data holding register blocks:

• Holding registers (ref. 4x address range)

The minimum value of a writable **holding register** can be read by adding 10000 to the Modbus address of the register.

The maximum value of a writable **holding register** can be read by adding 20000 to the Modbus address of the register.

The default value of a writable **holding register** can be read by adding 30000 to the Modbus address of the register.

C.2 Modbus function codes

This device supports following function codes: 3, 8 and 16.

Function codes 3 and 16 are used for accessing registers, max. 16 registers per read/write request is accepted.

Function code 8 is used for reading Modbus communication diagnostic information.

Below the various function code are described.

Function code 3 (Read holding registers)

General exceptions:

- Requesting less than 1 or more than 16 registers => Exception 3 (Illegal data value)
- Requesting invalid start address or start address with invalid quantity => Exception 2 (Illegal data address)

Application exceptions:

 Application errors; min/max limit of parameter exceeded; or parameter write-protected => Exception 4 (Slave device error)

Holes/register alignment:

- The read command always returns data if no exception is given.
- Holes in the holding register map return value zero in all bytes. E.g. reading 2 registers starting at 4:0004 above will result in 2 bytes of "float B" followed by 2 zeroes.

C.2 Modbus function codes

Function code 3 example

Query

Slave address	1 byte
Function	1 byte
Starting Address Hi	1 byte
Starting Address Lo	1 byte
Quantity of Registers Hi	1 byte
Quantity of Registers Lo	1 byte
CRC	2 bytes

Response

Slave address	1 byte
Function	1 byte
Byte count	1 byte
Register Value Hi	1 byte
Register Value Lo	1 byte
:	:
Register Value Hi	1 byte
Register Value Lo	1 byte
CRC	2 bytes

Example: Read absolute massflow (address 3000)

Query: 1,3,11,184,0,2,70,10

Slave address = 1 (0x01) Function = 3 (0x03) Starting Address Hi, Lo = 11, 184 (0x0B,0xB8) Quantity of Registers Hi , Lo = 0, 2 (0x00,0x02) CRC = 70,10 (0x46, 0x0A)

Starting address 0x0BB8 = 3000Quantity of registers = 0x0002 = 2

Response: 1,3,4,64,195,82,139,98,200

Slave address = 1 (0x01) Function = 3 (0x03) Byte Count = 4 (0x04) Register 1 - Register Value Hi, Lo = 64, 195 (0x40, 0xC3) Register 2 - Register Value Hi, Lo = 82, 139 (0x52, 0x93) CRC = 98,200 (0x62, 0xC8)

Absolute mass flow = 0x40C35293 = 6.10383 kg/sec

Function code 16 (Write multiple registers)

General exceptions

- Writing less than 1 or more than 16 registers => Exception 3 (Illegal data value)
- If ByteCount is not exactly 2 times NoOfRegisters => Exception 3 (Illegal data value)
- Requesting invalid start address or start address with invalid quantity => Exception 2 (Illegal data address)

Application exceptions:

- Application errors; min/max limit of parameter exceeded; or parameter write-protected => Exception 4 (Slave device error)
- Application errors include writing to ReadOnly holding registers

Holes/register alignment:

- If start-address is not the start of a mapped holding register => Exception 2 (Illegal data address)
- Writing to holes is allowed (ie ignored and no exception occurs) except for the condition described above
- If the end address is only part of a mapped holding register item (e.g. one half of a float value), the action depends on the data type. Writing parts of all data types => Exception 4 (Slave device error)

Function code 16 example

Query

Slave address	1 byte
Function	1 byte
Starting Address Hi	1 byte
Starting Address Lo	1 byte
Quantity of Registers Hi	1 byte
Quantity of Registers Lo	1 byte
Byte Count	1 byte
Registers Value Hi	1 byte
Registers Value Lo	1 byte
:	:
Registers Value Hi	1 byte
Registers Value Lo	1 byte
CRC	2 bytes

Response

Slave address	1 byte
Function	1 byte
Starting Address Hi	1 byte

C.2 Modbus function codes

Starting Address Lo	1 byte
Quantity of Registers Hi	1 byte
Quantity of Registers Lo	1 byte
CRC	2 bytes

Example: Set baud rate to 115200 baud (address 529)

Query: 1,16,2,17,0,1,2,0,5,70,210

Slave address = 1 (0x01) Function = 16 (0x10) Starting Address Hi, Lo = 2, 17 (0x02,0x11) Quantity of Registers Hi, Lo = 0, 1 (0x00,0x01) Byte Count = 2 (0x02) Registers Value Hi, Lo = 0, 5 (0x00,0x05) CRC = 70,10 (0x46, 0x0A)

Starting address 0x0211 = 529Number of registers = 0x0001 = 1Data 0x0005 = (115200 = value 5)

Response: 1,16,2,17,0,1,80,116

Slave address = 1 (0x01) Function = 16 (0x10) Starting Address Hi, Lo = 2, 17 (0x02,0x11) Quantity of Registers Hi, Lo = 0, 1 (0x00,0x01) CRC = 80,116 (0x50, 0x74)

Function code 8 (Diagnostics)

Modbus function code 8 provides a series of tests for checking the communication system between a client (Master) device and a server (Slave).

Sub- func- tion code (Dec)	Name	Description
00	Return Query Data	The data passed in the request data field is to be returned (looped back) in the response.
10	Clear Counters and Diagnostic Register	Clears all counters and the diagnostic register. Counters are also cleared upon power-up.
11	Return Bus Message Count	The response data field returns the quantity of messages that the remote device has detected on the communications sys- tem since its last restart, clear counters execution, or power– up.
12	Return Bus Communication Er- ror Count	The response data field returns the quantity of CRC errors en- countered by the remote device since its last restart, clear counters execution, or power–up.

The following diagnostics functions are supported:

C.2 Modbus function codes

Sub- func- tion code (Dec)	Name	Description
13	Return Bus Exception Error Count	The response data field returns the quantity of MODBUS ex- ception responses returned by the remote device since its last restart, clear counters execution, or power-up.
14	Return Slave Message Count	The response data field returns the quantity of messages broadcast or addressed to the remote device that the remote device has processed since its last restart, clear counters exe- cution, or power-up.
15	Return Slave No Response Count	The response data field returns the quantity of messages ad- dressed to the remote device for which it has returned no response (neither a normal response nor an exception re- sponse), since its last restart, clear counters execution, or power–up.
16	Return Slave NAK Count	The response data field returns the quantity of messages ad- dressed to the remote device for which it returned a Negative Acknowledge (NAK) exception response, since its last restart, clear counters execution, or power–up.
17	Return Slave Busy Count	The response data field returns the quantity of messages ad- dressed to the remote device for which it returned a Slave Device Busy exception response, since its last restart, clear counters execution, or power–up.
18	Return Bus Character Overrun Count	The response data field returns the quantity of messages ad- dressed to the remote device that it could not handle due to a character overrun condition, since its last restart, clear coun- ters execution, or power–up.
20	Clear Overrun Counter and Flag	Clears the overrun error counter and resets the error flag.

Function code 8 example

Query

Slave address	1 byte
Function	1 byte
Sub-function Hi	1 byte
Sub-function Lo	1 byte
Data Hi	1 byte
Data Lo	1 byte
:	:
Data Hi	1 byte
Data Lo	1 byte
CRC	2 bytes

Response

Slave address	1 byte
Function	1 byte

Modbus communication FCT010

C.3 Changing Modbus communication settings

Sub-function Hi	1 byte
Sub-function Lo	1 byte
Data Hi	1 byte
Data Lo	1 byte
:	:
Data Hi	1 byte
Data Lo	1 byte
CRC	2 bytes

Example: Read Return Slave Message Count (address 529)

Query: 1,8,0,14,0,0,129,200

Slave address = 1 (0x01) Function = 8 (0x08) Sub-function Hi, Lo = 0, 14 (0x00,0x0E) Data Hi, Lo = 0, 0 (0x00,0x00) CRC = 129,200 (0x81, 0xC8)

Sub-function 0x000E = 14 = Read Return Slave Message Count

Response: 1,8,0,14,0,97,64,32

Slave address = 1 (0x01) Function = 8 (0x08) Sub-function Hi, Lo = 0, 14 (0x00,0x0E) Data Hi, Lo = 0, 97 (0x00,0x65) CRC = 64,32 (0x41, 0xE3)

Read Return Slave Message Count = 0x0065 = 97 message received

C.3 Changing Modbus communication settings

Changing communication parameters, for example **Baud Rate**, **Modbus Parity Framing** or **Bus Address** effects the Modbus communication as follows:

- The new settings have effect only after a reset, either by restarting the device or writing the value 1 to Modbus address 600 **Restart communication**.
- The new settings will not have effect until the Modbus driver has responded to any ongoing Modbus request.

NOTICE

Setting addresses in a multidrop network

It is recommended NOT to use the default address in a multi-drop network. When setting device addresses, make sure that each device has a unique address. Replication of addresses may cause abnormal behavior of the entire serial bus and make the master unable to communicate with all slaves on the bus.

In the following the Modbus RTU holding registers available for the device are described.

Note

All Write parameters require password access.

Table C-1	Process values

Modbus ad- dress	Data type / Size [bytes]	Parameter	Description	Default value [unit]	Value range	Access level
3000	float / 4	Mass flow	Measured mass flow	- [kg/s]	-	Read Only
3002	float / 4	Volume flow	Measured volume flow	- [m³/s]	-	Read Only
3004	float / 4	Density	Measured density	- [kg/m³]	-	Read Only
3010	float / 4	Media temperature	Measured temperature of the process media	- [°C]	-	Read Only
3023	float / 4	Frame Tempera- ture	Measured temperature of the sensor frame ⁽¹⁾	- [°C]	-	Read Only

(1) Only available if the sensor has frame temperature measurement

Modbus communication FCT010

Table C-2Units for Process values and totalizer

Modbus ad- dress	Data type / Size [bytes]	Parameter	Description	Default value [unit]	Value range	Access level
7400	unsigned / 2	Mass flow unit	Select unit for mass flow process value	73: kilograms per second [Kg/s]	70: grams per second 71: grams per min 72: grams per hour 73: kilograms	Read / Write
					per second 74: kilograms per minute 75: kilograms	
					per hour 76: kilograms per day	
					77: metric tons per mi- nute 78: metric	
					tons per hour 79: metric tons per day	
					80: pounds per second 81: pounds	
					per minute 82: pounds per hour	
					83: pounds per day 84: short tons per minute	
					85: short tons per hour 86: short tons	
					87: long ton per hour	
					88: long ton per day	
					253: custom- ized unit	

Modbus ad- dress	Data type / Size [bytes]	Parameter	Description	Default value [unit]	Value range	Access level
7500	unsigned / 2	Volume flow unit	Select unit for volume flow process value	28: cubic me- ters per sec- ond	15: cubic feet per minute	Read / Write
				[m ³ /s]	16: US gallons per minute	
					17: liters per minute	
					18: imperial gallons per mi- nute	
					19: cubic me- ters per hour	
					22: US gallons per second	
					23: million US gallons per day	
					24: liters per second	
					25: million lit- ers per day	
					26: cubic feet per second	
					27: cubic feet per day	
					28: cubic me- ters per sec- ond	
					29: cubic me- ters per day	
					30: imperial gallons per hour	
					31: imperial gallons per day	
					130: cubic feet per hour	
					131: cubic me- ters per mi- nute	
					132: barrels (= 42 US gal- lons) per sec- ond	
					133: barrels (= 42 US gal- lons) per mi-	
					nute	

Modbus ad- dress	Data type / Size [bytes]	Parameter	Description	Default value [unit]	Value range	Access level
					134: barrels (= 42 US gal- lons) per hour	
					135: barrels (= 42 US gal- lons) per day	
					136: US gal- lons per hour	
					137: imperial gallons per second	
					138: liters per hour	
					170: beer bar- rel per second	
					171: beer bar- rel per minute	
					172: beer bar- rel per hour	
					173: beer bar- rel per day	
					235: US gal- lons per day	
					253: custom volume flow unit	

Modbus ad- dress	Data type / Size [bytes]	Parameter	Description	Default value [unit]	Value range	Access level
7600 unsigned / 2	unsigned / 2	Density unit	Select unit for density proc- ess value	92: kilograms per cubic me- ter [kg/m ³]	91: grams per cubic centime- ters 92: kilograms	Read / Write
					per cubic me- ter	
					94: pounds per cubic foot	
					95: grams per milliliter	
					96: kilograms per liter	
					97: grams per liter	
					98: pounds per cubic inch 93: pounds	
					per gallon 99: short tons	
					per cubic yard 146: micro-	
					grams per liter 147: micro-	
					grams per cu- bic meter	
					170: milli- grams per liter	
					253: custom mass flow unit	
7700	unsigned / 2	Temperature unit	Select unit for temperature process value	32: °C	32: °C 33: °F	Read / Write
					34: °R	
					35: K	
8320	unsigned / 2	Mass totalizer units	Select unit for mass totalizer value	61: kilograms [kg]	60: grams	Read / Write
					61: kilograms 62: metric tons	White
					63: pounds	
					64: short tons	
					65: long tons	
					125: ounces	
					253: custom- ized unit	

Modbus ad- dress	Data type / Size [bytes]	Parameter	Description	Default value [unit]	Value range	Access level
8456	Float / 4	Custom unit factor mass flow value	Custom unit for mass flow value, only active if custom- ized unit is selected	1	0 to 60000000	Read / Write
			Calculation is based on [kg/s]			
7516	Float / 4	Custom unit factor volume flow value	Custom unit for volume flow value, only active if custom- ized unit is selected	1	0 to 1000	Read / Write
			Calculation is based on [m³/s]			
8462	Float / 4	Custom unit factor density value	Custom unit for density val- ue, only active if customized unit is selected	1	0 to 60000	Read / Write
			Calculation is based on [kg/m³]			
8474	Float / 4	Custom unit factor mass totalizer	Custom unit for mass totaliz- er, only active if customized unit is selected	1	0 to 1000000	Read / Write
			Calculation is based on [kg]			

Table C-3 Identification

Modbus ad- dress	Data type / Size (bytes)	Parameter	Description	Default value (unit)	Value range	Access level
4000	String / 20	Manufacturer	Device manufacturer	Siemens	-	Read Only
4020	String / 10	Sensor Firmware Re- vision	Sensor firmware version	-	-	Read Only
4025	String / 16	SensorType	Sensor type.	-	-	Read Only
			Also shown on the device nameplate			
4033	String / 20	Sensor Serial Number	Unique sensor serial num- ber.	-	-	Read Only
			Also shown on the device nameplate			
4095	String / 10	Sensor Hardware Re- vision	Sensor hardware version	-	-	Read Only
4100	String / 10	Sensor Frontend Type	Sensor hardware variant	-	-	Read Only
4121	String / 20	Sensor Order Number	Sensor order number part 1 (MLFB).	-	-	Read Only
			Also shown on the device nameplate			
4131	String / 32	Sensor Order Number	Sensor order number part 2 (MLFB).	-	-	Read Only
			Also shown on the device nameplate			

Modbus ad- dress	Data type / Size (bytes)	Parameter	Description	Default value (unit)	Value range	Access level
4147	String / 32	Sensor Order Number	Sensor order number part 3 (MLFB).	-	-	Read Only
			Also shown on the device nameplate			
4164	String / 32	Long TAG	Enter a unique TAG name for the device (up to 32 charac- ters)			
4180	String / 16	Descriptor	Enter a unique description for the measurement point (up to 16 characters)			
4188	String / 16	Startup Date	Enter the installation date of the device			

Table C-4Operating conditions

Modbus ad- dress	Data type / Size [bytes]	Parameter	Description	Default value [unit]	Value range	Access level
2100	Unsigned / 2	Flow Direction	Define positive and negative flow direction. Default positive flow direc- tion is indicated by the arrow on the sensor.	1	0 to 1	Read / Write
			Possible selections:			
			• 0: Negative: The flow is measured '+' in default negative direction and '-' in default positive direc- tion.			
			• 1: Positive: The flow is measured '+' in default positive direction and '-' in default negative direc- tion			
2130	Unsigned / 2	Process Noise Damp- ing	Select process noise damp- ing level: 0: 55 ms filtering (Centrifu- gal Pump) 1: 110 ms filtering (Triplex Pump) 2: 220 ms filtering (Duplex Pump) 3: 400 ms filtering (Simplex Pump) 4: 800 ms filtering (Cam Pump)	2	0 Low to 4 High	Read / Write

Modbus ad- dress	Data type / Size [bytes]	Parameter	Description	Default value [unit]	Value range	Access level
2125	Float / 4	Off	Set mass flow limit for low flow cut-off.	Sensor size specific [kg/	0 to 1023	Read / Write
			Below this limit mass flow output is forced to zero.	s] ¹⁾		
			If Low Flow Cut-Off is set to 0, the cut-off functionality is disabled.			
			Notice:			
			It is recommended to set a lower value for gas applica- tions.			
2426	Float / 4	Mass flow Correction Factor	Specify correction factor for use in the mass flow calcula- tion	1	-1.999 to +1.999	Read / Write

¹⁾: See Sensor dimension dependent default settings (Page 140)

Table C-6 Volume flow

Modbus ad- dress	Data type / Size [bytes]	Parameter	Description	Default value [unit]	Value range	Access level
2170	Float / 4	Low Volume flow Cut Off	Define the numerical volume flow value below which the volume flow output is forced to zero.	Sensor size specific [m³/ s] ¹⁾	0 to 0.177	Read / Write

¹⁾: See Sensor dimension dependent default settings (Page 140)

Table C-7 Density

Modbus ad- dress	Data type / Size [bytes]	Parameter	Description	Default value [unit]	Value range	Access level
2127	Float / 4	Empty Tube Limit	Define threshold value of empty tube	500 [kg/m³]	-14 000 to +14 000	Read / Write
2129	Unsigned / 2	Empty Tube Detection	Set automatic detection of Empty Tube On/Off 0 = off (Empty tube is off). 1 = on (a density value below Empty Tube Limit triggers an alarm. All flow rate values are forced to zero %).	0	0 to 1	Read / Write

Modbus ad- dress	Data type / Size [bytes]	Parameter	Description	Default value [unit]	Value range	Access level
2442	Float / 4	Density Correction Factor	Set density compensation value (gain) in order to make a density correction (scale factor).	1	-1.999 to +1.999	Read / Write
			To increase the displayed density value with +0.5 %, set the density factor to 1.005.			
			The displayed density value will now be 0.5 % higher than before			
2444	Float / 4	Density Correction Offset	Set density compensation value (offset) in order to make an offset on the meas- ured density.	0 [kg/m³]	-1 400 to +1 400	Read / Write
			To make the flowmeter show + 2 kg/m ³ , change the densi- ty offset to 2.000 kg/m ³ in the 'Sensor' menu			

Table C-8 Totalizer

Modbus ad- dress	Data type / Size [bytes]	Parameter	Description	Default value [unit]	Value range	Access level
2609	unsigned / 2	Totalizer State	Totalizer state • 0 = paused • 1= running	1	0 to 1	Read only
2610	float / 4	Totalizer Value	The totalized MASS value in kg	0 [kg]	Min1.70E+38 Max. 1.70E+38	Read Only
3018	Unsigned / 4	Totalizer fixed point part	The totalized MASS value in kg. Most significant word of the totalizer (MSW). The format of the totalizer is a TotalType. The TotalType represent a fixed point value in the MSW 32 bit and a fractional part in the LSW 32 bit.	0 [kg]	Max. 1.70E+38 Min -2147483648 Max 2247483647	Read Only
			Example: 2.03 would be rep- resented as fixed point part = 2 and fractional part = 30000000			

Modbus ad- dress	Data type / Size [bytes]	Parameter	Description	Default value [unit]	Value range	Access level
3020	20 Unsigned / 4	part	The totalized MASS value in kg. Least significant word of the totalizer (LSW).	0 [kg]	Min -9999999999 Max 9999999999	Read Only
			The format of the totalizer is a TotalType. The TotalType represent a fixed point value in the MSW 32 bit and a fractional part in the LSW 32 bit.			
			Example: 2.03 would be rep- resented as fixed point part = 2 and fractional part = 30000000			
			Note: The data type is sign- ed32			
2612	unsigned / 2	Reset totalizer	Reset totalizer Value	-	Enter 1 to reset	Read / Write
2613	unsigned / 2	Pause totalizer	Pause totalizer Totalizer can only be paused when running	-	Enter 1 to pause	Read / Write
2614	unsigned / 2	Resume totalizer	Resume totalizer Totalizer can only be re- sumed when paused	-	Enter 1 to pause	Read / Write

Table C-9 Access level

Modbus ad- dress	Data type / Size [bytes]	Parameter	Description	Default value [unit]	Value range	Access level
404	Unsigned / 2	Access level	Access level status	-	32 (logged in)	Read Only
					4 (logged out)	
412	Unsigned / 2	User password	Password to enable writing commands	-	2457 (ena- ble user password	Read / Write
					0 (disable user pass- word)	

Modbus ad- dress	Data type / Size [bytes]	Parameter	Description	Default value [unit]	Value range	Access level
700	Unsigned / 2	Set To Default	Reset all parameters to facto- ry settings	-	Enter 1 to reset	Write
2700	Unsigned / 4	Operating Time Total	Total operating time since first power up	0 [h]	-	Read Only
2702	Unsigned / 4	Operating Time	Operating time since last power up	0 [h]	-	Read Only
4088	String / 14	Firmware Time Stamp	Firmware time stamp speci- fies the date and time when the sensor firmware was built	-	-	Read Only
4105	String / 32	Sensor PCBA Serial Number	Serial number of the sensor electronic	-	-	Read only

Table C-10 Maintenance

Table C-11 Device diagnostics

Modbus ad- dress	Data type / Size [bytes]	Parameter	Description	Default value [unit]	Value range	Access level
2756	Float / 4	Driver Current	Actual sensor driver current.	- [A]	0 to 0.124	Read Only
			The actual driver current is viscosity and sensor size dependent			
2758	Float / 4	Pick-up Amplitude 1	Actual pick-up 1 amplitude	- [V]	0 to 0 9999	Read Only
2760	Float / 4	Pick-up Amplitude 2	Actual pick-up 2 amplitude	- [V]	0 to 0 9999	Read Only
2762	Float / 4	Sensor Frequency	Actual sensor frequency	- [Hz]	0 to 1 023	Read Only
3032	Float / 4	PCB Temperature	Actual sensor electronic tem- perature	- [C°]	-50 to 200	Read Only

Table C-12 Aerated flow

Modbus ad- dress	Data type / Size [bytes]	Parameter	Description	Default value [unit]	Value range	Access level
2200	Unsigned / 2	Aerated Flow Alarm Limit	Alarm limit calculated in per cent of accepted bad meas- urements.	80 [%]	0 to 99	Read / Write
2201	Unsigned / 2	Aerated Flow Warn- ing Limit	Warning limit calculated in per cent of accepted bad measurements	O [%]	0 to 99	Read / Write
2202	Unsigned / 2	Measurement Sam- ple Time	The time period over which the actual percentage of bad measurements is calculated	5 [s]	1 to 10	Read / Write

Modbus ad- dress	Data type / Size [bytes]	Parameter	Description	Default value [unit]	Value range	Access level
2203	Unsigned / 2	Aerated Flow Filter	Aerated flow filter 0: Disabled 1: Enabled 2: Auto Auto means that filtering starts automatically when aerated flow is measured.	2	0 to 2	Read / Write
2204	Unsigned / 2	Filter Time Constant	PV Filter Time Constant 0: 0.5 seconds 1: 1 second 2: 2 seconds 3: 5 seconds 4: 10 seconds 5: 20 seconds 6: 30 seconds 7: User Defined Value	4	0 to 7	Read / Write
2205	Float / 4	Filter Start Hysteresis	The filter is active when the hysteresis value is exceeded. Aerated Flow Filter must be set to Auto	0.015 [V]	0 to 0.124	Read / Write
2207	Unsigned / 2	Minimum Filtering Time	The filtering time is reset each time hysteresis band is exceeded	10 [ms cycles]	0 to 65535	Read / Write
2214	Unsigned / 2	Pickup Amplitude Fil- ter	Enable/disable pickup ampli- tude filter. 0 = Disable 1 = Enable	1	0 to 1	Read / Write
2215	Unsigned / 2	Bad Measurement Count	Number of bad measure- ments counted during the last period	0	0 - 65535	Read Only
2216	Unsigned / 2	Filter Iteration	Set the number of times to repeat the same filter. In- creasing the number will in- crease the damping. Active only if Filter Time Con-	3	1 to 5	Read / Write
2217	Unsigned / 2	Bandwidth Factor	stant is set to 7. Increase the Bandwidth Fac- tor to reduce the LP (low pass) bandwidth filtering.	2	0 to 4	Read / Write
			Active only if Filter Time Con- stant is set to 7.			
2218	Unsigned / 2	Filter Pole Shift	Configure the bandwidth and damping in the stop band. A high number will give a small bandwidth and an increased damping in the stop band. Active only if Filter Time Con-	2	1 to 5	Read / Write
			stant is set to 7.			

Modbus ad- dress	Data type / Size [bytes]	Parameter	Description	Default value [unit]	Value range	Access level
2132	Unsigned / 2	Zero Point Adjust- ment	Select zero-point adjustment method. Automatic zero point adjustment is recom- mended.	0	0 to 1	Read / Write
			• $0 = Auto$			
2133	Float / 4	Manual Zero Point Offset	• 1 = Manual Enter agreed zero point off- set value for manual zero point adjustment mode.	0 [kg/s]	0 to 1023	Read / Write
2135	Unsigned / 2	Zero Point Duration	Define duration of zero point adjustment.	30 [s]	1 to 999	Read / Write
2136	Float / 4	Standard Deviation	Standard deviation during auto zero point adjustment	0 [kg/s]	-1023 to +1023	Read only
2138	Float / 4	Standard Deviation Limit	Set limit for zero point adjust- ment Standard Deviation value. If the Standard Devi- ation exceeds the Standard Deviation Limit, the auto zero point adjustment is aborted.	Sensor size specific [kg/ s] ¹⁾	0 to +1023	Read / Write
2140	Float / 4	Zero Point Offsett Lim- it	Set limit for zero point offset. If the zero point offset ex- ceeds the zero point offset limit, the zero point offset cannot be stored	Sensor size specific [kg/ s] ¹⁾	-1023 to +1023	Read / Write
2142	Float / 4	Zero Point Offset Val- ue	Default zero point offset based on factory calibration of sensor. A Zero point offset compen- sates for sensor variations due to process conditions.	0 [kg/s]	-1023 to +1023	Read only
2144	Unsigned / 2	Zero Point Adjust Pro- gress	Shows the progress of the currently running Zero Point adjustment in percentage	O [%]	0 to 100	Read Only

Table C-13 Zero point adjustment

Modbus ad- dress	Data type / Size [bytes]	Parameter	Description	Default value [unit]	Value range	Access level
2145	Unsigned / 2	Zero Point Adjust Sta- tus	Status of the last zero point adjustment performed Every high bit ('1') represents an error occurred in the last zero point adjustment per- formed. No high bits equals ok. Bit 0 = Zero sigma limit ex- ceeded Bit 1 = Zero offset limit excee- ded Bit 2 = Quality of zero point conditions	-	• 1 • 2 • 4	Read Only
2180	Unsigned / 2	Start Zero Point Adjustment	Start automatic zero point adjustment. The automatic zero point ad- justment determines the ap- plication specific zero point offset automatically. Possible selections: • 0: Idle • 1: Running • 2: Start	0	0 to 2	Read / Write

¹⁾: See Sensor dimension dependent default settings (Page 140)

Table C-14 Modbus

Modbus ad- dress	Data type / Size [bytes]	Parameter	Description	Default value [unit]	Value range	Access level
527	Unsigned / 2	Float byte order	The float byte order used in Modbus messages. Selection 0: Byte order: 1-0-3-2 Selection 1: Byte order: 0-1-2-3 Selection 2: Byte order: 2-3-0-1 Selection 3: Byte order: 3-2-1-0 The first mentioned byte is the first byte sent.	3	0 to 3	Read / Write
			Byte 3 corresponds to the left-most byte (MSB) of a 32 bit float in big endian format, byte 0 corresponds to the right-most byte (LSB).			
528	Unsigned / 2	Modbus Address	Set Modbus Device Address	1	1 to 247	Read / Write

Modbus ad- dress	Data type / Size [bytes]	Parameter	Description	Default value [unit]	Value range	Access level
529	Unsigned / 2	Baudrate	Set communication bau- drate.	1	0 to 5	Read / Write
			Following baud rates are available:			
			• 0 = 9600			
			• 1 = 19200 (Default)			
			• 2 = 115200			
			• 4 = 38400			
			• 5 = 57600			
			• 6=76800			
530	Unsigned / 2	Modbus Parity Fram- ing	RS-485 parity and framing 8 databits are always used	0	0 to 2	Read / Write
			0 = even parity, 1 stopbit 1 = odd parity, 1 stopbit 2 = no parity, 2 stopbits			
600	Unsigned / 2	Restart communica- tion	Restart Modbus communica- tion	-	0 to 1	Write
			Write:			
			• 0 = No effect			
			• 1 = Restart			
			Read:			
			Always 0			

Table C-15 Sensor

Modbus ad- dress	Data type / Size [bytes]	Parameter	Description	Default value [unit]	Value range	Access level
2113	Float / 4	Minimum Frame Tem- perature	Lower limit of the frame tem- perature	-50 [°C]		Read only
2115	Float / 4	Maximum Frame Temperature	Lower limit of the frame tem- perature	200 [°C]		Read only
4043	String / 16	Sensor size	Nominal sensor diameter (DN)	-	-	Read only
4051	String / 32	Hazardous area ap- proval	Hazardous area approval of the sensor	-	-	Read only
4078	String / 20	Wetted materials	Sensor enclosure material	-	-	Read Only

Table C-16	Volume flow calibration

Modbus ad- dress	Data type / Size [bytes]	Parameter	Description	Default value [unit]	Value range	Access level
2103	Float / 4	Maximum Volume flow Capacity	Maximum volume flow measurement capacity of the sensor	Sensor size specific [m ³ / s] ¹⁾	0 to 0.177	Read only

¹⁾: See Sensor dimension dependent default settings (Page 140).

Table C-17Mass flow calibration

Modbus ad- dress	Data type / Size [bytes]	Parameter	Description	Default value [unit]	Value range	Access level
2101	Float / 4	Maximum Mass flow Capacity	Maximum mass flow measurement capacity of the sensor	Sensor size specific [kg/ s] ¹⁾	0 to 1023	Read only
2402	Float / 4	Calibration Factor	Factory-set sensor-specific calibration factor. The calibration factor is shown on the sensor name- plate	-	Min: 5.00E +07 Max: 4.29E +09	Read only

¹⁾: See Sensor dimension dependent default settings (Page 140).

Table C-18Density calibration

Modbus ad- dress	Data type / Size [bytes]	Parameter	Description	Default value [unit]	Value range	Access level
2428	Float / 4	Density Calibration Offset	Specify an offset in the den- sity flow calculation	-	-14 000 to +14 000	Read only
2430	Float / 4	Density Calibration Factor	Specify gain factor in the density flow calculation	-	-21474835 83 to 214748358 3	Read only
2432	Float / 4	Dens. Comp. Tube Temp.	Specifies a tube temperature coefficient in the density cal- culation	-	-0.001953 to +0.001953	Read only
2434	Float / 4	Dens. Comp. Frame Temp.	Specifies a frame tempera- ture coefficient in the density calculation	-	-0.001953 to +0.001953	Read only

Modbus ad- dress	Data type / Size [bytes]	Parameter	Description	Default value [unit]	Value range	Access level
2764	Float / 4	Mass flow Simulation Value	Set mass flow simulation val- ue. The mass flow will be set to this value on all outputs, if Simulation Mass Flow is enabled	0 [kg/s]	-1023 to +1023	Read / Write
2766	Float / 4	Density Simulation Value	Set density simulation value. The density will be set to this value on all outputs, if Simu- lation Density is enabled	1000 [kg/m³]	-20000 to +20000	Read / Write
2768	Float / 4	Media Temperature Simulation Value	Set media temperature simu- lation value. The media tem- perature will be set to this value on all outputs if Simu- lation media Temperature is enabled	0 [°C]	-50 to +200	Read / Write
2770	Float / 4	Frame Temperature Simulation Value	Set frame temperature simu- lation value. The frame temperature will be set to this value on all out- puts if Simulation Frame Temperature is enabled	0 [°C]	-50 to +200	Read / Write
2772	Float / 4	Volume flow Simula- tion Value	Set volume flow simulation value. The volume flow will be set to this value on all outputs, if Simulation Volume Flow is enabled	m³/s	-65 to +65	Read / Write
2780	Unsigned / 2	Enable Simulation	 Activate simulation. Select one of the following values: Bit 0: Mass flow Bit 1: Density Bit 2: Volume flow Bit 3: Media temperature Bit 4: Frame temperature 	0	0 to 63	Read / Write

Table C-19 Simulation

Modbus communication FCT010

Table C-20	Alarms
------------	--------

Modbus ad- dress	Data type / Size [bytes]	Parameter	Description	Default value [unit]	Value range	Access level	
3012 U	Unsigned / 4	Alarm Group 1	The following bit is set in case of active alarm:	-	-	Read Only	
		•	Bit 4: Power Supply Malfunc- tion				
			Bit 6: Temperature Circuit Mal- function				
			Bit 10: Measurement Out Of Range				
			• Bit 14: Calibration Malfunction				
			Bit 15: Compensation Out Of Range				
			Bit 17: Pickup Malfunction				
			Bit 23: Driver Malfunction				
			Bit 26: Measurement Out Of Range				
				Bit 27: Mass Flow Max Limit Ex- ceeded			
			Bit 28: Volume Flow Max Limit Exceeded				
			Bit 29: Density Max Limit Excee- ded				
			Bit 30: Min Tube Temp Exceeded Dit 21:				
			Bit 31: Max Tube Temp Exceeded				

Modbus ad- dress	Data type / Size [bytes]	Parameter	Description	Default value [unit]	Value range	Access level
3014 Unsigned	Unsigned / 4	Alarm Group 2	The following bit is set in case of active alarm:	-	-	Read Only
			Bit 0: Min Frame Temp Excee- ded			
			Bit 1: Max Frame Temp Excee- ded			
			Bit 2: Zero Sigma Limit Excee- ded			
			Bit 3: Zero Offset Limit Excee- ded			
			Bit 4: Quality Of Zero Point Conditions			
			• Bit 5: Empty Pipe			
			Bit 6: Sensor Partially Filled			
			Bit 7: Storage Malfunction			
			Bit 8: System Internal			
			Bit 14: Unstable Measurement Conditions			
			• Bit 15: Auto-filtering enabled			
			Bit 23: Sensor Startup			

Modbus ad- dress	Data type / Size [bytes]	Parameter	Description	Default value [unit]	Value range	Access level
3014	Unsigned / 4	Alarm Group 2	Quality code of a measured value	Process values for quality co- des Media temper- ature Density Volume flow Mass flow Quality code for each proc- ess value con- sist of 2 bits: Bit 24/25: Media temper- ature Bit 26/27: Density Bit 28/29: Volume flow Bit 30/31: Mass flow	11 Good 01 Reserved 10 Simula- tion 00 Bad	Read Only

Index

Α

Applications, 26

С

Cable requirements, 45 Cable specifications, 112 Catalog catalog sheets, 137 Certificates, 13, 137 Certificates and approvals, 114 Characteristics Density calibration, 172 Mass flow calibration, 172 Sensor, 171 Volume flow calibration, 172 Cleaning, 87 Commissioning Steps, 51 Communication Modbus, 170 Communication parameters Setup, 54 Coriolis Measurement principle, 139 Cross talk, 36, 104 Customer Support, (Refer to Technical support)

D

Design Sensor, 19, 111 Designated use, 110 Device identification, 21, 23, 24 Diagnosing with SIMATIC PDM, 105 Diagnostics, 96 Dimensions Remote versions, 132 Disassembly, 39 Disposal, 93 Document history, 7 Documentation Edition, 7 Downloads, 137

Ε

Electrical connection Cable requirements, 45 In hazardous area, 44 Empty tube monitoring, 79 Exception codes, 146

F

Flow direction, 32

Н

Handling, 36 Hazardous area Electrical connection, 44 Laws and directives, 13 Qualified personnel, 15 Hot swappable, 92 Hotline, (Refer to Support request)

I

Icons, (see Symbol) Identification Sensor, 162 Installation Drop line, 35 Gas, 31, 33, 34 Incorrect, 104 Inlet / Outlet conditions, 31 Liquid, 31, 32, 34 Location in the system, 31 Mounting the sensor, 35 Orienting the sensor, 32 Upstream / Downstream, 31 Internet Modbus Organisation, 18

L

Laws and directives Disassembly, 13 Personel, 13 Low flow cut-off, 78, 103

Μ

Maintenance, 85, 89 device status symbols, 95 Maintenance and Diagnostics Access level, 166, 176 Aerated flow, 167 Device diagnostics, 167 Maintenance, 167 Zero point adjustment, 169 Manuals, 137 Mass flow cut-off limit, 79 Modbus Features, 17 Frame, 18 Network, 53 Organisation Website, 18 Technical data, 117 Technology, 18 Modbus holding registers Alarms, 174 Characteristics, 171 Communication, 170 Identification, 162 Maintenance & Diagnostics, 166, 176 Process values, 157 Setup, 163 Simulation, 173 Totalizer, 165 **Modifications** correct usage, 13 improper, 13 Mounting, (See Installation)

Ν

Nameplate FC300, 23 FCT010, 24 MASS 2100, 21 Specific information, 24

Ρ

PDM Commissioning steps, 51 Performance, 107 Power supply, 107, 112 Process noise damping, 80 Process values, 73, 157 Process variables, 114

Q

Qualified personnel, 15

R

Rated operating conditions, 113 Recalibration, 86 Reference conditions, 107 Repair, 89 Return procedure, 92

S

Scope of delivery, 10 Sensor design, 19 Sensor dimension dependent default settings Fraction, 143 Mass flow, 140 Standard volume flow, 142 Volume flow, 141 Zero point adjustment, 145 Sensor orientation, (See Installation) SensorFlash, 116 Service, 89, 138 Service and support Internet, 138 Service information, 89 Setup Density, 164 Mass flow, 164 Operating conditions, 163 Volume flow, 164 Signal processing, 140 SIMATIC PDM Zero point adjustment, 63 Simulation, 83, 173 Specific information nameplate FCT010, 24 Support, 138 Support request, 138 Symbol configuration, 95 device status, 95 diagnostics, 95 maintenance, 95 operating mode, 95 process value, 95 Symbols, (Refer to warning symbols)

System design, 110 System integration, 17

Т

Technical data, 107, 110, 116 Technical support, 138 partner, 138 personal contact, 138 Termination DIP switches, 47 Test certificates, 13 Totalizer, 165

U

Unicast communication mode, 18 Units for Process values and totalizer, 158

V

Vibrations, 36, 104 Volume flow cut-off limit, 79

W

Warning symbols, 13 Warranty, 11

Ζ

Zero point adjustment, 77 Automatic, 77 Manual, 78 via SIMATIC PDM, 63