

ILMK 331

Screw-In Transmitter

Ceramic Sensor

accuracy according to IEC 60770: 0.5 % FSO

Nominal pressure

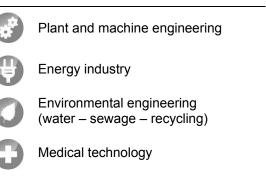
from 0 ... 400 mbar up to 0 ... 60 bar

Output signals

2-wire: 4 ... 20 mA 3-wire: 0 ... 20 mA / 0 ... 10 V others on request

Special characteristics

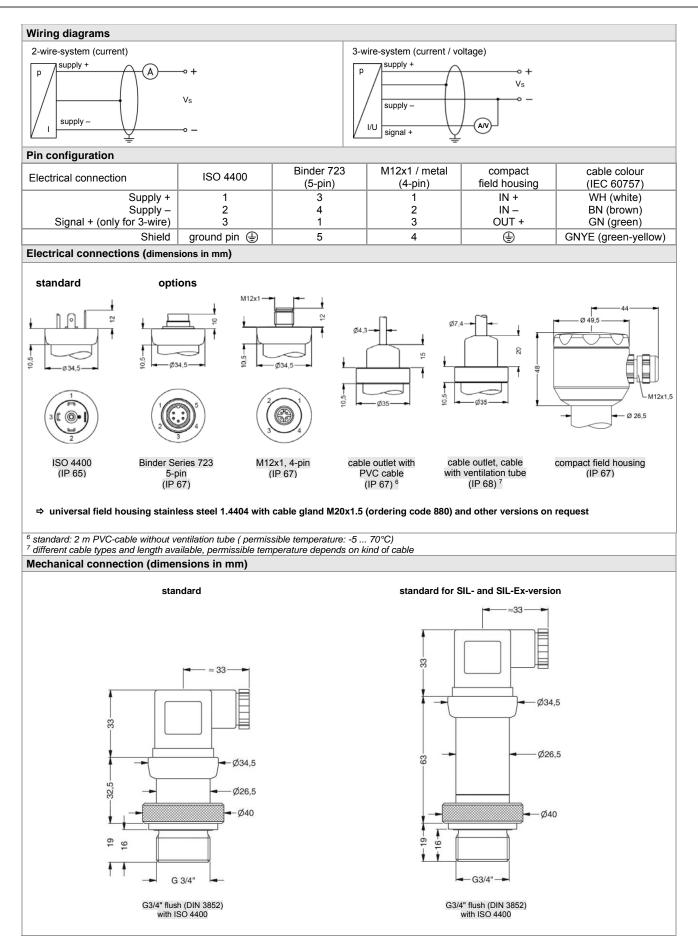
- pressure port G 3/4" flush for pasty and impurity media
- pressure port PVDF for aggressive media


Optional versions

- IS-version (only for 4 ... 20mA / 2-wire): Ex ia = intrinsically safe for gases and dusts
- SIL 2 application according to IEC 61508 / IEC 61511
- customer specific versions

The screw-in transmitter ILMK 331 has been especially designed for level and process measurement and is suitable for pressure measurement of liquids, oils and gases. Usage in more viscous or polluted media is possible be-cause of the semi-flush pressure sensor.

For the usage in aggressive media we recommended the version with PVDF pressure port. Additional features like e.g. an intrinsically safe version or a functionally safe version (SIL 2) complete the range of possibilities.


Preferred areas of use are

Tel.: 03303 / 50 40 66 Fax.: 03303 / 50 40 68

Input pressure range																
	[bar] 0.4	0.6 1	1.6	2.5	4	6	10	16	25	40 ¹	60 ¹					
	H ₂ O] 4	6 10	16	25	40	60	100	160	250	400	600					
	[bar] 1	2 2	4	4	10	20	20	40	40	100	200					
	[bar] 2															
		2 4 4 5 7,5 12 25 30 50 50 120 2 $p_N \ge 1$ bar: unlimited vacuum resistance														
		r: on request	Jaannie	lotarioo												
¹ only possible with stainless steel	11.1															
Output signal / Supply																
Standard	2-wire:															
Option IS-version ²	2-wire:															
Options 3-wire	3-wire:	0 20 mA / 0 10 V /														
² IS-version not possible with plas	tic pressure port				, 											
Performance																
Accuracy ³	<u>≤±0.5 %</u>	$\leq \pm 0.5$ % FSO														
Permissible load	current 3	current 2-wire: $R_{max} = [(V_S - V_{S min}) / 0.02 \text{ A}] \Omega$ current 3-wire: $R_{max} = 500 \Omega$ voltage 3-wire: $R_{min} = 10 \text{ k}\Omega$														
Influence effects	1 11 2	0.05 % FSO / 0.05 % FSO /														
Response time	3-wire:	2-wire: ≤ 10 msec 3-wire: ≤ 3 msec														
Long term stability	≤ ± 0,3 %	6 FSO / year at	t referenc	ce conditi	ons											
³ accuracy according to IEC 6077)										
Thermal effects (Offset and																
Thermal error		FSO / 10 K														
in compensated range		0 85 °C														
Permissible temperatures ⁴		medium: -40 125 °C electronics / environment: -40 85 °C storage: -40 100 °C														
⁴ for pressure port in PVDF the me				ecuonica		innent	+0 05	0	storage.	-40 1	0 0					
	sulum temperatur	e /3 -30 00 C														
Electrical protection																
Short-circuit protection	permane															
Reverse polarity protection		ge, but also no														
Electromagnetic compatibility Mechanical stability	emission	and immunity	accordine	g to EN 6	1326											
Vibration	10 g RMS	G (25 2000 ⊦	lz) acc	cordina to	DIN EN	60068-2	2-6									
Shock		10 g RMS (25 2000 Hz) according to DIN EN 60068-2-6 500 g / 1 msec according to DIN EN 60068-2-27														
Materials				, or an ig to	2											
							la a									
Pressure port / housing		standard:pressure portoptions for $p_N \le 25$ bar:PVDF						housing stainless steel 1.4404 (316L) PVDF								
Option compact field housing		or $p_{\rm N} \leq 25 \rm bar^{\circ}$			ei 1.440	```		/DF		. ()					
			PV	DF		. ,	P۱									
<u> </u>	stainless standard	steel 1.4301 (3 FKM	PV	DF		. ,	P\ nickel pla	ated (clar	nping rar							
Seals	stainless standard options:	steel 1.4301 (3 FKM EPDM	PV	DF		. ,	P\ nickel pla		nping rar							
Seals Diaphragm	stainless standard options: ceramics	steel 1.4301 (3 FKM EPDM Al ₂ O ₃ 96 %	904); cat	DF		. ,	P\ nickel pla	ated (clar	nping rar							
Seals Diaphragm Media wetted parts	stainless standard: options: ceramics pressure	steel 1.4301 (3 FKM EPDM Al ₂ O ₃ 96 % port, seals, dia	904); cat	DF		. ,	P\ nickel pla	ated (clar	nping rar							
Seals Diaphragm Media wetted parts Explosion protection (only f	stainless standard: options: ceramics pressure for 4 20 mA	steel 1.4301 (3 FKM EPDM Al ₂ O ₃ 96 % port, seals, dia / 2-wire)	PV 304); cat	DF ble gland	M12x1.	5, brass,	P\ nickel pla	ated (clar	nping rar		·					
Seals Diaphragm Media wetted parts Explosion protection (only 1 Approval DX19-ILMK 331 only	stainless standard: options: ceramics pressure for 4 20 mA y IBExU 10 ort zone 0:	steel 1.4301 (3 FKM EPDM Al ₂ O ₃ 96 % port, seals, dia / 2-wire) ATEX 1068 X II 1G Ex ia IIC	PV 304); cat aphragm / IEC C T4 Ga	DF ole gland Ex IBE 1:	M12x1.	5, brass,	P\ nickel pla	ated (clar	nping rar		·					
Seals Diaphragm Media wetted parts Explosion protection (only f Approval DX19-ILMK 331 only for stainless steel pressure po Safety technical maximum val	stainless standard: options: ceramics pressure for 4 20 mA y IBExU 10 zone 0: zone 20: lues U _i = 28 V	steel 1.4301 (3 FKM EPDM Al ₂ O ₃ 96 % port, seals, dia / 2-wire) ATEX 1068 X II 1G Ex ia IIC II 1D Ex ia IIIC II 1D Ex ia IIIC	PV 304); cat aphragm / IEC C T4 Ga C T135 ° = 660 m	DF ble gland Ex IBE 12 C Da W, Ci ≈ 0	M12x1. 2.0027X nF, L _i ≈	5, brass,	P\ nickel pla ot	ated (clar	nping rar		·					
Seals Diaphragm Media wetted parts Explosion protection (only f Approval DX19-ILMK 331 only for stainless steel pressure po Safety technical maximum val Permissible temperatures for	stainless standard: options: ceramics pressure for 4 20 mA y BExU 10 ort zone 0: zone 20: lues U _i = 28 V the suppl in Zone 0	steel 1.4301 (3 FKM EPDM Al ₂ O ₃ 96 % port, seals, dia / 2-wire) ATEX 1068 X II 1G Ex ia IIC II 1D Ex ia IIIC II 1D Ex ia IIC II 10 Ex ia IIC	PV/ 804); cat phragm / IEC: C T4 Ga C T135 ° = 660 m have an 0 60 °C	DF ble gland Ex IBE 1: C Da W, $C_i \approx 0$ inner cap C with p_{atr}	M12x1. 2.0027X nF, Li≈ acity of	5, brass, 0 μH, max. 27	nickel pla ot	ated (clar	nping rar		·					
Seals Diaphragm Media wetted parts Explosion protection (only f Approval DX19-ILMK 331 only for stainless steel pressure po Safety technical maximum va Permissible temperatures for environment Connecting cables	stainless standard: options: ceramics pressure for 4 20 mA y IBExU 10 zone 0: zone 20: lues U _i = 28 V the suppl in Zone 1 cable cap	steel 1.4301 (3 FKM EPDM Al ₂ O ₃ 96 % port, seals, dia / 2-wire) ATEX 1068 X II 1G Ex ia II0 II 1D Ex ia II0 II 1D Ex ia II0 II 1D Ex ia II0 y connections : -20 or higher: -40 pacitance: sig	PV/ 304); cat aphragm / IEC C T4 Ga C T135 ° = 660 m have an 0 60 °C 0/-20 7 nal line/s	DF ble gland Ex IBE 1: C Da W, C _i \approx 0 inner cap C with p _{atr} 0 °C shield also	M12x1. 2.0027X nF, Li≈ acity of I 0.8 bar o signal	5, brass, 0 μH, max. 27 up to 1. ⁻ line / sign	nickel pla ot nF to the 1 bar nal line: 1	hers on r hers on r housing 60 pF/m	mping rar		·					
Seals Diaphragm Media wetted parts Explosion protection (only f Approval DX19-ILMK 331 only for stainless steel pressure po Safety technical maximum val Permissible temperatures for environment Connecting cables (by factory)	stainless standard: options: ceramics pressure for 4 20 mA y IBExU 10 ort zone 0: zone 20: lues U _i = 28 V the suppl in Zone 0 in Zone 1	steel 1.4301 (3 FKM EPDM Al ₂ O ₃ 96 % port, seals, dia / 2-wire) ATEX 1068 X II 1G Ex ia II0 II 1D Ex ia II0 II 1D Ex ia II0 II 1D Ex ia II0 y connections : -20 or higher: -40 pacitance: sig	PV/ 304); cat aphragm / IEC C T4 Ga C T135 ° = 660 m have an 0 60 °C 0/-20 7 nal line/s	DF ble gland Ex IBE 1: C Da W, C _i \approx 0 inner cap C with p _{atr} 0 °C shield also	M12x1. 2.0027X nF, Li≈ acity of I 0.8 bar o signal	5, brass, 0 μH, max. 27 up to 1. ⁻ line / sign	nickel pla ot	hers on r hers on r housing 60 pF/m	mping rar		·					
Seals Diaphragm Media wetted parts Explosion protection (only f Approval DX19-ILMK 331 only for stainless steel pressure po Safety technical maximum val Permissible temperatures for environment Connecting cables (by factory) Miscellaneous	stainless standard: options: ceramics pressure for 4 20 mA y IBExU 10 zone 0: zone 20: lues U _i = 28 V the suppl in Zone 1 cable cap cable ind	steel 1.4301 (3 FKM EPDM Al ₂ O ₃ 96 % port, seals, dia / 2-wire) ATEX 1068 X II 1G Ex ia IIC II 1D Ex ia IIC II 1D Ex ia IIIC II 1D Ex ia IIC II 1D Ex ia	PV/ 304); cat phragm / / IEC C T4 Ga C T135 ° = 660 m have an 0 60 °C /-20 7 nal line/s nal line /s	DF ble gland Ex IBE 1: C Da W, C _i \approx 0 inner cap C with p _{atr} 0 °C shield als shield als	M12x1. 2.0027X nF, Li≈ acity of I 0.8 bar o signal	5, brass, 0 μH, max. 27 up to 1. ⁻ line / sign	nickel pla ot nF to the 1 bar nal line: 1	hers on r hers on r housing 60 pF/m	mping rar		·					
Seals Diaphragm Media wetted parts Explosion protection (only f Approval DX19-ILMK 331 only for stainless steel pressure po Safety technical maximum va Permissible temperatures for environment Connecting cables (by factory) Miscellaneous Option SIL 2 version ⁵	stainless standard: options: ceramics pressure for 4 20 mA / y IBExU 10 zone 0: zone 20: lues U _i = 28 V the suppl in Zone 1 cable cap cable ind	steel 1.4301 (3 FKM EPDM Al ₂ O ₃ 96 % port, seals, dia / 2-wire) ATEX 1068 X II 1G Ex ia IIC II 1D Ex ia IIC II 1D Ex ia IIC II 1D Ex ia IIC v connections : -20 or higher: -40 vacitance: sig uctance: sig to IEC 61508	PV/ 304); cat phragm / / IEC C T4 Ga C T135 ° = 660 m have an 0 60 °C //-20 7 nal line/s nal line /s / IEC 61	DF De gland Ex IBE 1: C Da W, C _i \approx 0 inner cap C with p _{atr} 0 °C shield alse shield alse 511	M12x1. 2.0027X nF, Li≈ acity of I 0.8 bar o signal	5, brass, 0 μH, max. 27 up to 1. ⁻ line / sign	nickel pla ot nF to the 1 bar nal line: 1	hers on r hers on r housing 60 pF/m 1 μH/m	nping rar	nge 2	8 mm					
Seals Diaphragm Media wetted parts Explosion protection (only f Approval DX19-ILMK 331 only for stainless steel pressure po Safety technical maximum va Permissible temperatures for environment Connecting cables (by factory) Miscellaneous Option SIL 2 version ⁵ Current consumption	stainless standard: options: ceramics pressure for 4 20 mA / y IBExU 10 zone 0: zone 20: lues U _i = 28 V the suppl in Zone 1 cable cap cable ind	steel 1.4301 (3 FKM EPDM Al ₂ O ₃ 96 % port, seals, dia / 2-wire) ATEX 1068 X II 1G Ex ia IIC II 1D Ex ia IIC II 1D Ex ia IIIC II 1D Ex ia IIC II 1D Ex ia	PV/ 304); cat phragm / / IEC C T4 Ga C T135 ° = 660 m have an 0 60 °C //-20 7 nal line/s nal line /s / IEC 61	DF De gland Ex IBE 1: C Da W, C _i \approx 0 inner cap C with p _{atr} 0 °C shield alse shield alse 511	M12x1. 2.0027X nF, Li≈ acity of I 0.8 bar o signal	5, brass, 0 μH, max. 27 up to 1. ⁻ line / sign	nickel pla ot nF to the 1 bar nal line: 1	hers on r hers on r housing 60 pF/m 1 μH/m	mping rar	nge 2	8 mm					
Seals Diaphragm Media wetted parts Explosion protection (only f Approval DX19-ILMK 331 only for stainless steel pressure po Safety technical maximum va Permissible temperatures for environment Connecting cables (by factory) Miscellaneous Option SIL 2 version ⁵ Current consumption Weight	stainless standard: options: ceramics pressure for 4 20 mA / y IBExU 10 zone 0: zone 20: lues U _i = 28 V the suppl in Zone 1 cable cap cable ind	steel 1.4301 (3 FKM EPDM Al ₂ O ₃ 96 % port, seals, dia 7 2-wire) ATEX 1068 X II 1G Ex ia IIC II 1D Ex ia IIC II	PV/ 304); cat phragm / / IEC C T4 Ga C T135 ° = 660 m have an 0 60 °C //-20 7 nal line/s nal line /s / IEC 61	DF De gland Ex IBE 1: C Da W, C _i \approx 0 inner cap C with p _{atr} 0 °C shield alse shield alse 511	M12x1. 2.0027X nF, Li≈ acity of I 0.8 bar o signal	5, brass, 0 μH, max. 27 up to 1. ⁻ line / sign	nickel pla ot nF to the 1 bar nal line: 1	hers on r hers on r housing 60 pF/m 1 μH/m	nping rar	nge 2	8 mm					
Seals Diaphragm Media wetted parts Explosion protection (only f Approval DX19-ILMK 331 only for stainless steel pressure po Safety technical maximum va Permissible temperatures for environment Connecting cables (by factory) Miscellaneous Option SIL 2 version ⁵ Current consumption Weight	stainless standard: options: ceramics pressure for 4 20 mA / y IBExU 10 zone 0: zone 20: lues U _i = 28 V the suppl in Zone 1 cable cap cable ind according signal ou	steel 1.4301 (3 FKM EPDM Al ₂ O ₃ 96 % port, seals, dia 7 2-wire) ATEX 1068 X II 1G Ex ia IIC II 1D Ex ia IIC II	PV/ 304); cat phragm / / IEC C T4 Ga C T135 ° = 660 m have an 0 60 °C //-20 7 nal line/s nal line /s / IEC 61	DF De gland Ex IBE 1: C Da W, C _i \approx 0 inner cap C with p _{atr} 0 °C shield alse shield alse 511	M12x1. 2.0027X nF, Li≈ acity of I 0.8 bar o signal	5, brass, 0 μH, max. 27 up to 1. ⁻ line / sign	nickel pla ot nF to the 1 bar nal line: 1	hers on r hers on r housing 60 pF/m 1 μH/m	nping rar	nge 2	8 mm					
Seals Diaphragm Media wetted parts Explosion protection (only f Approval DX19-ILMK 331 only for stainless steel pressure po Safety technical maximum va Permissible temperatures for environment Connecting cables (by factory) Miscellaneous Option SIL 2 version ⁵ Current consumption Weight	stainless standard: options: ceramics pressure for 4 20 mA / y IBExU 10 zone 0: zone 20: lues U _i = 28 V the suppl in Zone 0 in Zone 1 cable cap cable ind according signal ou approx. 1	steel 1.4301 (3 FKM EPDM Al ₂ O ₃ 96 % port, seals, dia 7 2-wire) ATEX 1068 X II 1G Ex ia IIC II 1D Ex ia IIC II	PV/ 304); cat phragm / / IEC C T4 Ga C T135 ° = 660 m have an 0 60 °C //-20 7 nal line/s nal line /s / IEC 61	DF De gland Ex IBE 1: C Da W, C _i \approx 0 inner cap C with p _{atr} 0 °C shield alse shield alse 511	M12x1. 2.0027X nF, Li≈ acity of I 0.8 bar o signal	5, brass, 0 μH, max. 27 up to 1. ⁻ line / sign	nickel pla ot nF to the 1 bar nal line: 1	hers on r hers on r housing 60 pF/m 1 μH/m	nping rar	nge 2	8 mm					
Seals Diaphragm Media wetted parts Explosion protection (only f Approval DX19-ILMK 331 only for stainless steel pressure po Safety technical maximum va Permissible temperatures for environment Connecting cables (by factory) Miscellaneous Option SIL 2 version ⁵ Current consumption Weight Installation position Operational life	stainless standard: options: ceramics pressure for 4 20 mA / y lBExU 10 ort zone 0: zone 20: lues U _i = 28 V the suppl in Zone 1 cable cap cable ind according signal ou approx. 1 any	steel 1.4301 (3 FKM EPDM Al ₂ O ₃ 96 % port, seals, dia / 2-wire) ATEX 1068 X II 1G Ex ia IIC II 1D Ex ia IIC II 1D Ex ia IIC II 1D Ex ia IIC v connections : -20 or higher: -40 vacitance: sig uctance: sig to IEC 61508 tput current: m 50 g m load cycles	PV/ 804); cat phragm / IEC 74 Ga C T135 ° = 660 m have an 0 60 °C /-20 7 nal line/s nal line /- / IEC 61 ax. 25 m.	DF De gland Ex IBE 1: C Da W, C _i \approx 0 inner cap C with p _{atr} 0 °C shield alse shield alse 511	M12x1. 2.0027X nF, Li≈ acity of I 0.8 bar o signal	5, brass, 0 μH, max. 27 up to 1. ⁻ line / sign	nickel pla ot nF to the 1 bar nal line: 1	hers on r hers on r housing 60 pF/m 1 μH/m	nping rar	nge 2	8 mm					
Seals Diaphragm Media wetted parts Explosion protection (only f Approval DX19-ILMK 331 only for stainless steel pressure po Safety technical maximum va Permissible temperatures for environment Connecting cables (by factory) Miscellaneous Option SIL 2 version ⁵ Current consumption Weight Installation position	stainless standard: options: ceramics pressure for 4 20 mA / y lBExU 10 ort zone 0: zone 20: lues U _i = 28 V the suppl in Zone 1 cable cap cable ind according signal ou approx. 1 any	steel 1.4301 (3 FKM EPDM Al ₂ O ₃ 96 % port, seals, dia 7 2-wire) ATEX 1068 X II 1G Ex ia IIC II 1D Ex ia IIC II	PV/ 804); cat phragm / IEC 74 Ga C T135 ° = 660 m have an 0 60 °C /-20 7 nal line/s nal line /- / IEC 61 ax. 25 m.	DF De gland Ex IBE 1: C Da W, C _i \approx 0 inner cap C with p _{atr} 0 °C shield alse shield alse 511	M12x1. 2.0027X nF, Li≈ acity of I 0.8 bar o signal	5, brass, 0 μH, max. 27 up to 1. ⁻ line / sign	nickel pla ot nF to the 1 bar nal line: 1	hers on r hers on r housing 60 pF/m 1 μH/m	nping rar	nge 2	8 mm)					

Ordering code ILMK 331																				
ILMK 331]-[].	-]-[]-[-[-]-C]-[l-C			
Pressure gauge in bar	460																			
gauge in mH ₂ O	4 6 0 4 6 1																			
Input [mH ₂ O] [bar]	. • ·																			
4 0.4		4	0	0	0															
6 0.6		6	0		0															
10 1.0		1	0		1															
16 1.6		1			1															
25 2.5 40 4.0		2 4			1															
60 6.0		6			1															
100 10		1	0	0	2															
160 16		1	6	0	2															
250 25		2	5	0	2 2															
400 40 1		4	0	0	2															
600 60 ¹		6	0	0 9	2															
Customer		9	9	9	9															consult
Analogue output 4 20 mA / 2-wire						1														
0 20 mA / 2-wire						2														
0 10 V / 3-wire						3														
intrinsic safety 4 20 mA / 2-wire 2						Е														
SIL2 4 20 mA / 2-wire						1S														
SIL2 with intrinsic safety ²						ES														
4 20 mA / 2-wire customer						9														consult
Accuracy						9														COnsult
0.5 % FSO		_	_	_	_	_	5				_									
customer							9													consult
Electrical connection																				
male and female plug ISO 4400								1												
male plug Binder series 723 (5-pin)								2	0											
cable outlet with PVC cable (IP67) ³ cable outlet,								Т		0										
cable with ventilation tube (IP68) ⁴								Т	R	0										
male plug M12x1 (4-pin) / metal								М	1	0										
compact field housing																				
stainless steel 1.4301 (304)								8												
customer								9	9	9										consult
Mechanical connection																				
G3/4" DIN 3852 with flush sensor											k	(0	0							
customer											c	9 9	9							consult
Seals													10							Sonoun
FKM														1						
EPDM														3						
customer														9						consult
Pressure port stainless steel 1.4404 (316L)																				
option for $p_N \le 25$ bar: PVDF ⁵															1 B					
customer															9					consult
Diaphragm																				50110411
ceramics Al ₂ O ₃ 96 %																2				
customer																9				consult
Special version																				
standard																	0	0	0 9	
customer																	9	9	А	consult

¹ only possible for pressure port of stainless steel
 ² intrinsic safety not possible with plastic pressure port
 ³ standard: 2 m PVC cable without ventilation tube (permissible temperature: -5 ... 70 °C); others on request
 ⁴ code TR0 = PVC cable, cable with ventilation tube available in different types and lengths
 ⁵ permissible medium temperature: -30 ... 60 °C